
vantage6

A. van Gestel, B. van Beusekom, D. Smits, F. Martin, J. van Soest, H. Alradhi, M. Sieswerda

Apr 15, 2024





CONTENTS

1 What is vantage6? 1

2 Overview of this documentation 3

3 Vantage6 resources 5

4 Index 7
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.1 Vantage6 components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.2 Vantage6 resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.3 A simple federated average algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.4 How to run the algorithm in vantage6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.5 Running your own algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 Network Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1.1 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1.2 Data Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.1.3 User or Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.1.4 Learn more? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 User guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.1 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 Python client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2.2 Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2.3 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.3 R client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.3.1 Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.3.2 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.4 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Node admin guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4.2.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.2.2 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.3 Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.4 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.4.1 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.4.2 Available commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.5 Configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.5.1 How to create a configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

i



4.4.5.2 Where is my configuration file? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.5.3 All configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.5.4 Configuration file location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.5.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.5.6 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Server admin guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5.2.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.2.2 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.3 Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.3.1 Local (test) Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.3.2 Hosting your server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5.4 Deploy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.4.1 NGINX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.4.2 Docker compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.5 Install optional components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.5.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.5.2 Docker registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.5.3 EduVPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.5.4 RabbitMQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.5.5 SMTP server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.6 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.6.1 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.6.2 Available commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.6.3 Local test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.6.4 Batch import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.6.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.7 Configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.7.1 How to create a configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.7.2 Where is my configuration file? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.7.3 All configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.7.4 Configuration file location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.7.5 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.8 Permission management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.8.1 Authentication types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.8.2 Permission rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.8.3 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.9 Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.9.1 Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.9.2 Roles and Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.9.3 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.9.4 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.9.5 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.9.6 Tasks and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Algorithm store admin guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.1.1 What is an algorithm store? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.1.2 Linking algorithm stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.2.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.2.2 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6.3 Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.3.1 Local (test) Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ii



4.6.3.2 Hosting your algorithm store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.4 Deploy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.4.1 NGINX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.4.2 Docker compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.5 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.5.1 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.5.2 Available commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.6 Configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.6.1 How to create a configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.6.2 Where is my configuration file? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.6.3 All configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.6.4 Configuration file location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.6.5 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Algorithm Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7.1 Algorithm concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7.1.1 Algorithm structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7.1.2 Input & output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7.1.3 Wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7.1.4 Child containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7.1.5 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.1.6 Cross language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7.2 Algorithm development step-by-step guide . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.2.1 Starting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.2.2 Setting up your environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.2.3 Implementing your algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7.2.4 Environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7.2.5 Returning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7.2.6 Example functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7.2.7 Testing your algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7.2.8 Writing documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7.2.9 Package & distribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7.2.10 Calling your algorithm from vantage6 . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.2.11 Updating your algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7.3 Algorithm code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.3.1 Defining functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.3.2 Implementing the algorithm functions . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7.3.3 Algorithm wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7.3.4 VPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.7.3.5 Dockerfile structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7.4 Classic Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.4.1 Mathematical decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.4.2 Federated implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7.4.3 Vantage6 integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Feature descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.8.1 Server features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8.1.1 Two-factor authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.8.1.2 Horizontal scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.8.1.3 API response structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.8.2 Node features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.8.2.1 Whitelisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8.2.2 SSH Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.8.2.3 Linked docker containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8.3 Algorithm features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.8.3.1 Algorithm wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

iii



4.8.3.2 Algorithm container isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.8.4 Communication between components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8.4.1 SocketIO connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.8.4.2 End to end encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.8.4.3 Algorithm-to-algorithm VPN comunication . . . . . . . . . . . . . . . . . . . . . 99

4.9 Developer community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.9.1 Contribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.9.1.1 Support questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.9.1.2 Reporting issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.9.1.3 Security vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.9.1.4 Community Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.9.1.5 Submitting patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.9.1.6 Roles in the vantage6 community . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.9.2.1 How this documentation is created . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.9.2.2 API Documenation with OAS3+ . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.9.3 Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.9.3.1 Version format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.9.3.2 Testing a release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.9.3.3 Create a release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.9.3.4 The release pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.9.3.5 Distribute release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.9.3.6 User Interface release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.9.3.7 Post-release checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.10 Function documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.10.1 Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.10.1.1 vantage6.node.Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.10.1.2 vantage6.node.docker.docker_base . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.10.1.3 vantage6.node.docker.docker_manager . . . . . . . . . . . . . . . . . . . . . . . . 115
4.10.1.4 vantage6.node.docker.task_manager . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.10.1.5 vantage6.node.docker.vpn_manager . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.10.1.6 vantage6.node.docker.exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.10.1.7 vantage6.node.proxy_server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.10.1.8 vantage6.node.cli.node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.10.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.10.2.1 Main server class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.10.2.2 Starting the server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.10.2.3 Permission management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.10.2.4 Socket functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.10.2.5 API endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.10.2.6 SQLAlchemy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.10.2.7 Database utility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.10.2.8 Mail service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.10.2.9 Default roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.10.2.10 Custom server exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.10.3 Algorithm store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.10.3.1 Main class of algorithm store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.10.3.2 API endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.10.3.3 SQLAlchemy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.10.4 Command line interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.10.4.1 Node CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.10.4.2 Server CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.10.4.3 Algorithm store CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.10.4.4 Local test setup CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

iv



4.10.4.5 Run test algorithms CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.10.4.6 vantage6.cli.context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.10.4.7 vanatge6.cli.configuration_manager . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.10.4.8 vantage6.cli.configuration_wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.10.4.9 vanatge6.cli.rabbitmq.queue_manager . . . . . . . . . . . . . . . . . . . . . . . . 154
4.10.4.10 vanatge6.cli.rabbitmq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.10.4.11 vantage6.cli.utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.10.5 Python client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.10.5.1 User Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.10.5.2 Custom client exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.10.6 Algorithm client and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.10.6.1 Algorithm Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.10.6.2 Algorithm tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.10.7 Backend common . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.10.7.1 Services resources base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.10.8 Common functions (vantage6-common) . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.10.8.1 vantage6.common.configuration_manager . . . . . . . . . . . . . . . . . . . . . . 188
4.10.8.2 vantage6.common.context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.10.8.3 vantage6.common.encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.10.8.4 vantage6.common . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.10.8.5 vantage6.common.docker.addons . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.10.8.6 vantage6.common.docker.network_manager . . . . . . . . . . . . . . . . . . . . . 201
4.10.8.7 vantage6.common.task_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.10.8.8 vantage6.common.colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.10.8.9 vantage6.common.exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4.11 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.12 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4.12.1 4.4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.12.2 4.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.12.3 4.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.12.4 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.12.5 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.12.6 4.3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.12.7 4.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.12.8 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.12.9 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.12.10 4.2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.12.11 4.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.12.12 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.12.13 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.12.14 4.1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.12.15 4.0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.12.16 4.0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.12.17 4.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.12.18 4.0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.12.19 3.11.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.12.20 3.11.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.12.21 3.10.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.12.22 3.10.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.12.23 3.10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.12.24 3.10.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.12.25 3.9.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.12.26 3.8.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.12.27 3.8.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

v



4.12.28 3.8.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.12.29 3.8.3 - 3.8.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.12.30 3.8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.12.31 3.8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.12.32 3.8.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.12.33 3.7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4.12.34 3.7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4.12.35 3.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4.12.36 3.7.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.12.37 3.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.12.38 3.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.12.39 3.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.12.40 3.5.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.12.41 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.12.42 3.4.0 & 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.12.43 3.3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.12.44 3.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.12.45 3.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
4.12.46 3.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
4.12.47 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
4.12.48 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
4.12.49 3.3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
4.12.50 3.2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.12.51 3.1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.12.52 3.0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.12.53 2.3.0 - 2.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
4.12.54 2.2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
4.12.55 2.1.2 & 2.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
4.12.56 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
4.12.57 2.1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
4.12.58 2.0.0.post1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
4.12.59 2.0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
4.12.60 1.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
4.12.61 1.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
4.12.62 1.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
4.12.63 1.2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
4.12.64 1.1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
4.12.65 1.0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

4.13 Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Python Module Index 235

Index 237

vi



CHAPTER

ONE

WHAT IS VANTAGE6?

Vantage6 stands for privacy preserving federated learning infrastructure for secure insight exchange.

The project is inspired by the Personal Health Train (PHT) concept. In this analogy vantage6 is the tracks and stations.
Compatible algorithms are the trains, and computation tasks are the journey. Vantage6 is completely open source under
the Apache License.

What vantage6 does:

• delivering algorithms to data stations and collecting their results

• managing users, organizations, collaborations, computation tasks and their results

• providing control (security) at the data-stations to their owners

The vantage6 infrastructure is designed with three fundamental functional aspects of federated learning.

1. Autonomy. All involved parties should remain independent and autonomous.

2. Heterogeneity. Parties should be allowed to have differences in hardware and operating systems.

3. Flexibility. Related to the latter, a federated learning infrastructure should not limit the use of relevant data.

1

https://pht.health-ri.nl/
https://github.com/IKNL/vantage6/blob/master/LICENSE


vantage6

2 Chapter 1. What is vantage6?



CHAPTER

TWO

OVERVIEW OF THIS DOCUMENTATION

This documentation space consists of the following main sections:

• Overview → You are here now

• Introduction → Introduction to vantage6 concepts

• Architecture → An more extensive explanation of vantage6 components

• User guide → How to use vantage6 as a researcher

• Node admin guide → How to install and configure vantage6 nodes

• Server admin guide → How to configure and deploy vantage6 servers

• Algorithm store admin guide → How to configure and deploy vantage6 algorithm stores

• Feature descriptions (Under construction) → Documentation of vantage6 features

• Developer community → How to collaborate on the development of the vantage6 infrastructure

• Algorithm Development → Develop algorithms that are compatible with vantage6

• Function documentation → Documentation of the vantage6 infrastructure code

• Glossary → A dictionary of common terms used in these docs

• Release notes → Log of what has been released and when

3



vantage6

4 Chapter 2. Overview of this documentation



CHAPTER

THREE

VANTAGE6 RESOURCES

This is a - non-exhaustive - list of vantage6 resources.

Documentation

• docs.vantage6.ai → This documentation.

• vantage6.ai → vantage6 project website

• Academic papers → Technical insights into vantage6

Source code

• vantage6 → Contains all components (and the python-client).

• Planning → Contains all features, bugfixes and feature requests we are working on. To submit one yourself, you
can create a new issue.

Community

• Discord → Chat with the vantage6 community

• Community meetings → Bi-monthly developer community meeting

5

https://docs.vantage6.ai
https://vantage6.ai
https://vantage6.ai/vantage6/
https://github.com/vantage6/vantage6
https://github.com/orgs/vantage6/projects
https://github.com/vantage6/vantage6/issues
https://discord.gg/yAyFf6Y


vantage6

6 Chapter 3. Vantage6 resources



CHAPTER

FOUR

INDEX

4.1 Introduction

In many research projects, data is distributed across multiple organizations. This makes it difficult to perform analyses
that require data from multiple sources, as the data owners don’t want to share their data with others. Vantage6 is a
platform that enables privacy-enhancing analyses on distributed data. It allows organizations to collaborate on analyses
while only sharing aggregated results, not the raw data.

As a user, you can use vantage6 to run your algorithms on sensitive data. In order to create the tasks to run your
algorithms, it will be helpful to understand how vantage6 works. In order to help you understand this, we will first
explain the basic architecture of vantage6, followed by a description of the resources that are available in vantage6.
Using those concepts, we will explain give an example of a simple algorithm and explain how that is run within vantage6.

4.1.1 Vantage6 components

In vantage6, a client can pose a question to the central server. Each organization with sensitive data contributes one
node to the network. The nodes collects the research question from the server and fetches the algorithm to answer it.
When the algorithm completes, the node sends the aggregated results back to the server.

The roles of these vantage6 components are as follows:

• A (central) server coordinates communication with clients and nodes. The server tracks the status of the com-
putation requests and handles administrative functions such as authentication and authorization.

• Node(s) have access to data and execute algorithms

• Clients (i.e. users or applications) request computations from the nodes via the client

7



vantage6

• Algorithms are scripts that are run on the sensitive data. Each algorithm is packaged in a Docker image; the
node pulls the image from a Docker registry and runs it on the local data. Note that the node owner can control
which algorithms are allowed to run on their data.

On a technical level, vantage6 may be seen as a (Docker) container orchestration tool for privacy preserving analyses. It
deploys a network of containerized applications that together ensure insights can be exchanged without sharing record-
level data.

4.1.2 Vantage6 resources

There are several entities in vantage6, such as users, organizations, tasks, etc. These entities are created by users that
have sufficient permission to do so and are stored in a database that is managed by the central server. This process
ensures that the right people have the right access to the right actions, and that organizations can only collaborate with
each other if they agree to do so.

The following statements and the figure below should help you understand their relationships.

• A collaboration is a collection of one or more organizations.

• For each collaboration, each participating organization needs a node to compute tasks. When a collaboration is
created, accounts are also created for the nodes so that they can securely communicate with the server.

• Collaborations can contain studies. A study is a subset of organizations from the collaboration that are involved
in a specific research question. By setting up studies, it can be easier to send tasks to a subset of the organizations
in a collaboration and to keep track of the results of these analyses.

• Each organization has zero or more users who can perform certain actions.

• The permissions of the user are defined by the assigned rules.

• It is possible to collect multiple rules into a role, which can also be assigned to a user.

• Users can create tasks for one or more organizations within a collaboration. Tasks lead to the execution of the
algorithms.

• A task should produce an algorithm run for each organization involved in the task. The results are part of such
an algorithm run.

The following schema is a simplified version of the database. A 1-n relationship means that the entity on the left side
of the relationship can have multiple entities on the right side. For instance, a single organization can have multiple
vantage6 users, but a single user always belongs to one organization. There is one 0-n relationship between roles and
organizations, since a role can be coupled to an organization, but it doesn’t have to be. An n-n relationship is a many-to-
many relationship: for instance, a collaboration can contain multiple organizations, and an organization can participate
in multiple collaborations.

8 Chapter 4. Index



vantage6

4.1.3 A simple federated average algorithm

To compute an average, you usually sum all the values and divide them by the number of values. In Python, this can
be done as follows:

x = [1,2,3,4,5]
average = sum(x) / len(x)

In a federated data set the values for x are distributed over multiple locations. Let’s assume x is split into two parties:

a = [1,2,3]
b = [4,5]

In this case we can compute the average as:

average = (sum(a) + sum(b))/(len(a) + len(b))

The goal is to compute the average without sharing the individual numbers. In the case of an average algorithm, each
node therefore shares only the sum and the number of elements in the dataset. The server then computes the average
by summing the sums and dividing by the sum of the number of elements. This way, the individual numbers are never
shared.

4.1. Introduction 9



vantage6

4.1.4 How to run the algorithm in vantage6

The average algorithm explained above can be separated in a central part and a federated part. The federated part uses
the data to compute the sum and the number of elements. The central part is the aggregation of these results. In order
to do so, it is also responsible to start the federated parts and to collecting their results. Note that for more complex
algorithms, this can be an iterative process: the central part can send new tasks to the federated parts based on the
results of the previous round of federated tasks.

Fig. 4.1: Common task hierarchy in vantage6. The user (left) creates a task for the central part of the algorithm (pink
hexagon). The central part creates subtasks for the federated parts (green hexagons). When the subtasks are finished,
the central part collects the results and computes the final result, which is then available to the user.

Now, let’s see how this works in vantage6. It is easy to confuse the central server with the central part of the algorithm:
the server is the central part of the infrastructure but not the place where the central part of the algorithm is executed
(Fig. 4.2). The central part is actually executed at one of the nodes, because it gives more flexibility: for instance, an
algorithm may need heavy compute resources to do the aggregation, and it is better to do this at a node that has these
resources rather than having to upgrade the server whenever a new algorithm needs more resources.

Note that is also possible for the user to create the subtasks directly, and to compute the central part of the algorithm
themselves. This is however not the most common approach as it is in general easier to let the central algorithm do the
work.

10 Chapter 4. Index



vantage6

Fig. 4.2: The flow of the average algorithm in vantage6. The user creates a task for the central part of the algorithm.
This is registered at the server, and leads to the creation of a central algorithm container on one of the nodes. The
central algorithm then creates subtasks for the federated parts of the algorithm, which again are registered at the server.
All nodes for which the subtask is intended start their work by executing the federated part of the algorithm. The nodes
send the results back to the server, from where they are picked up by the central algorithm. The central algorithm then
computes the final result and sends it to the server, where the user can retrieve it.

4.1. Introduction 11



vantage6

4.1.5 Running your own algorithms

Of course, the average algorithm is just an example. In practice, you can run many other algorithms in vantage6. The
only requirement is that you package the algorithm in a Docker image that vantage6 can run. The focus of vantage6
is on setting up an infrastructure to run algorithms on sensitive data and ensuring that the data is kept private - the
algorithm implementation is kept highly flexible.

The freedom in defining the code also allows you to use federated learning libraries such as PySyft, TensorFlow or
Flower within your vantage6 algorithm. Also, it is not only possible to run federated algorithms, but also MPC algo-
rithms or other protocols.

Note: Vantage6 tries to limit the definition of algorithms as little as possible. This means that within a project, it
should be established which algorithms are allowed to run on the nodes. Review of this code - or trust in persons
that have created the algorithm - is the responsibility of each node owner. They are ultimately in control over which
algorithms are run on their data.

Vantage6 is designed to be as flexible as possible, so you can use any programming language and any libraries you like.
Python is the most common language to use within the vantage6 community, and also has the most tools available to
help you with your work.

4.2 Architecture

4.2.1 Network Actors

As we saw before, the vantage6 network consists of a central server, a number of nodes and a client. This section
explains in some more detail what these network actors are responsible for, and which subcomponents they contain.

4.2.1.1 Server

The vantage6 server is the central point of contact for all communication in vantage6. However, it also relies on other
infrastructure components to function properly. The following components are required for proper functioning of the
server.

Vantage6 server
Contains the users, organizations, collaborations, tasks and their results. It handles authentication and authoriza-
tion to the system and is the central point of contact for clients and nodes.

Docker registry
Contains algorithms stored in images which can be used by clients to request a computation. The node will
retrieve the algorithm from this registry and execute it.

Algorithm store (optional but recommended)
The algorithm store is intended to be used as a repository for trusted algorithms within a certain project. Algo-
rithm stores can be coupled to specific collaborations or to all collaborations on a given server. Note that you can
also couple the community algorithm store (https://store.cotopaxi.vantage6.ai) to your server. This store contains
a number of community algorithms that you may find useful.

Note: The algorithm store is required when using the user interface. If no algorithm store is coupled to col-
laborations, no algorithms can be run from the user interface. It is also possible to couple collaborations to an
algorithm store that you do not host yourself.

12 Chapter 4. Index

https://openmined.github.io/PySyft/index.html
https://www.tensorflow.org/
https://flower.ai/
https://en.wikipedia.org/wiki/OS-level_virtualization
https://store.cotopaxi.vantage6.ai


vantage6

VPN server (optional)
If algorithms need to be able to engage in peer-to-peer communication, a VPN server can be set up to help
them do so. This is usually the case when working with MPC, and is also often required for machine learning
applications.

RabbitMQ message queue (optional)
The vantage6 server uses the socketIO protocol to communicate between server, nodes and clients. If there are
multiple instances of the vantage6 server, it is important that the messages are communicated to all relevant
actors, not just the ones that a certain server instance is connected to. RabbitMQ is therefore used to synchronize
the messages between multiple vantage6 server instances.

4.2.1.2 Data Station

Vantage6 node
The node is responsible for executing the algorithms on the local data. It protects the data by allowing only
specified algorithms to be executed after verifying their origin. The node is responsible for picking up the task,
executing the algorithm and sending the results back to the server. The node needs access to local data. For more
details see the technical documentation of the node.

Database
The database may be in any format that the algorithms relevant to your use case support. The currently supported
database types are listed here.

Algorithm
When the node receives a task from the central server, it will download the algorithm from the Docker registry
and execute it on the local data. The algorithm is therefore a temporary component that is automatically created
by the node and only present during the execution of a task.

4.2.1.3 User or Application

Users or applications can interact with the vantage6 server in order to create tasks and retrieve their results, or manage
entities at the server (i.e. creating or editing users, organizations and collaborations).

The vantage6 server is an API, which means that there are many ways to interact with it programatically. There are
however a number of applications available that make is easier for users to interact with the vantage6 server. These are
explained in more detail in the User guide but are also briefly mentioned here:

User interface
The user interface is a web application that allows users to interact with the server. It is used to create and manage
organizations, collaborations, users, tasks and algorithms. It also allows users to view and download the results
of tasks. Use of the user interface recommended for ease of use.

Python client
The vantage6 python client <python-client> is a Python package that allows users to interact with the server
from a Python environment. This is helpful for data scientists who want to integrate vantage6 into their existing
Python workflow.

API
It is also possible to interact with the server using the API directly.

Note: There is also an R client but this is not actively maintained and does not support all functionality.

4.2. Architecture 13



vantage6

4.2.1.4 Learn more?

If you want to learn more about specific components or features of vantage6, check out the feature section of the
documentation. It contains detailed information about the different features of vantage6 and how to use them.

4.3 User guide

In this section of the documentation, we explain how you can interact with vantage6 servers and nodes as a user.

There are four ways in which you can interact with the central server: the User interface (UI), the Python client, the R
client, and the API . In the sections below, we describe how to use each of these methods, and what you need to install
(if anything).

For most use cases, we recommend to use the User interface, as this requires the least amount of effort. If you want to
automate your workflow, we recommend using the Python client.

Warning: Note that for some algorithms, tasks cannot yet be created using the UI, or the results cannot be retrieved.
This is because these algorithms have Python-specific datatypes that cannot be decoded in the UI. In this case, you
will need to use the Python client to create the task and read the results.

Warning: Depending on your algorithm it may be required to use a specific language to post a task and retrieve
the results. This could happen when the output of an algorithm contains a language specific datatype and or serial-
ization.

4.3.1 User interface

The User Interface (UI) is a website where you can login with your vantage6 user account. Which website this is,
depends on the vantage6 server you are using. If you are using the Cotopaxi server, go to https://portal.cotopaxi.
vantage6.ai and login with your user account.

Using the UI should be relatively straightforward. There are buttons that should help you e.g. create a task or change
your password. If anything is unclear, please contact us via Discord.

Note: If you are a server administrator and want to set up a user interface, see this section on deploying a UI.

Note: If you are running your own server with v6 server start, you can start the UI locally with v6 server
start --with-ui, or you may specify that the UI should always be started in the ui section of the server configuration
file.

14 Chapter 4. Index

https://portal.cotopaxi.vantage6.ai
https://portal.cotopaxi.vantage6.ai
https://discord.com/invite/yAyFf6Y


vantage6

Fig. 4.3: Screenshot of the vantage6 UI

4.3. User guide 15



vantage6

4.3.2 Python client

The Python client is the recommended way to interact with the vantage6 server for tasks that you want to automate. It
is a Python library that facilitates communication with the vantage6 server, e.g. by encrypting and decrypting data for
tasks for you.

The Python client aims to completely cover the vantage6 server communication. It can create computation tasks and
collect their results, manage organizations, collaborations, users, etc. Under the hood, the Python client talks to the
server API to achieve this.

4.3.2.1 Requirements

You need Python to use the Python client. We recommend using Python 3.10, as the client has been tested with this
version. For higher versions, it may be difficult to install the dependencies.

Warning: If you use a vantage6 version older than 3.8.0, you should use Python 3.7 instead of Python 3.10.

4.3.2.2 Install

It is important to install the Python client with the same version as the vantage6 server you are talking to. Check
your server version by going to https://<server_url>/version (e.g. https://cotopaxi.vantage6.ai/version or
http://localhost:5000/api/version) to find its version.

Then you can install the vantage6-client with:

pip install vantage6==<version>

where you add the version you want to install. You may also leave out the version to install the most recent version.

4.3.2.3 Use

First, we give an overview of the client. From the section Authentication onwards, there is example code of how to
login with the client, and then create organizations, tasks etc.

Overview

The Python client contains groups of commands per resource type. For example, the group client.user has the
following commands:

• client.user.list(): list all users

• client.user.create(username, password, ...): create a new user

• client.user.delete(<id>): delete a user

• client.user.get(<id>): get a user

You can see how to use these methods by using help(...) , e.g. help(client.task.create) will show you the
parameters needed to create a new user:

16 Chapter 4. Index



vantage6

help(client.task.create)
#Create a new task
#
# Parameters
# ----------
# collaboration : int
# Id of the collaboration to which this task belongs
# organizations : list
# Organization ids (within the collaboration) which need
# to execute this task
# name : str
# Human readable name
# image : str
# Docker image name which contains the algorithm
# description : str
# Human readable description
# input : dict
# Algorithm input
# database: str, optional
# Name of the database to use. This should match the key
# in the node configuration files. If not specified the
# default database will be tried.
#
# Returns
# -------
# dict
# Containing the task information

The following groups (related to the Vantage6 resources) of methods are available. They usually have list(),
create(), delete() and get() methods attached - except where they are not relevant (for example, a rule that
gives a certain permission cannot be deleted).

• client.user

• client.organization

• client.rule

• client.role

• client.collaboration

• client.task

• client.run

• client.result

• client.node

Finally, the class client.util contains some utility functions, for example to check if the server is up and running or
to change your own password.

4.3. User guide 17



vantage6

Authentication

This section and the following sections introduce some minimal examples for administrative tasks that you can perform
with our Python client. We start by authenticating.

To authenticate, we create a config file to store our login information. We do this so we do not have to define the
server_url, server_port and so on every time we want to use the client. Moreover, it enables us to separate the
sensitive information (login details, organization key) that you do not want to make publicly available, from other parts
of the code you might write later (e.g. on submitting particular tasks) that you might want to share publicly.

# config.py

server_url = "https://MY VANTAGE6 SERVER" # e.g. https://cotopaxi.vantage6.ai or
# http://localhost for a local dev server

server_port = 443 # This is specified when you first created the server
server_api = "" # This is specified when you first created the server

username = "MY USERNAME"
password = "MY PASSWORD"

organization_key = "FILEPATH TO MY PRIVATE KEY" # This can be empty if you do not want␣
→˓to set up encryption

Note that the organization_key should be a filepath that points to the private key that was generated when the
organization to which your login belongs was first created (see Creating an organization).

Then, we connect to the vantage 6 server by initializing a Client object, and authenticating

from vantage6.client import UserClient as Client

# Note: we assume here the config.py you just created is in the current directory.
# If it is not, then you need to make sure it can be found on your PYTHONPATH
import config

# Initialize the client object, and run the authentication
client = Client(config.server_url, config.server_port, config.server_api,

log_level='debug')
client.authenticate(config.username, config.password)

# Optional: setup the encryption, if you have an organization_key
client.setup_encryption(config.organization_key)

Creating an organization

After you have authenticated, you can start generating resources. The following also assumes that you have a login
on the Vantage6 server that has the permissions to create a new organization. Regular end-users typically do not have
these permissions (typically only administrators do); they may skip this part.

The first (optional, but recommended) step is to create an RSA keypair. A keypair, consisting of a private and a public
key, can be used to encrypt data transfers. Users from the organization you are about to create will only be able to use
encryption if such a keypair has been set up and if they have access to the private key.

18 Chapter 4. Index



vantage6

from vantage6.common import warning, error, info, debug, bytes_to_base64s
from vantage6.client.encryption import RSACryptor
from pathlib import Path

# Generated a new private key
# Note that the file below doesn't exist yet: you will create it
private_key_filepath = r'/path/to/private/key'
private_key = RSACryptor.create_new_rsa_key(Path(private_key_filepath))

# Generate the public key based on the private one
public_key_bytes = RSACryptor.create_public_key_bytes(private_key)
public_key = bytes_to_base64s(public_key_bytes)

Now, we can create an organization

client.organization.create(
name = 'The_Shire',
address1 = '501 Buckland Road',
address2 = 'Matamata',
zipcode = '3472',
country = 'New Zealand',
domain = 'the_shire.org',
public_key = public_key # use None if you haven't set up encryption

)

Users can now be created for this organization. Any users that are created and who have access to the private key we
generated above can now use encryption by running

client.setup_encryption('/path/to/private/key')
# or, if you don't use encryption
client.setup_encryption(None)

after they authenticate.

Creating a collaboration

Here, we assume that you have a Python session with an authenticated Client object, as created in Authentication. We
also assume that you have a login on the Vantage6 server that has the permissions to create a new collaboration (regular
end-users typically do not have these permissions, this is typically only for administrators).

A collaboration is an association of multiple organizations that want to run analyses together. First, you will need to
find the organization id’s of the organizations you want to be part of the collaboration.

client.organization.list(fields=['id', 'name'])

Once you know the id’s of the organizations you want in the collaboration (e.g. 1 and 2), you can create the collabora-
tion:

collaboration_name = "fictional_collab"
organization_ids = [1,2] # the id's of the respective organizations
client.collaboration.create(name = collaboration_name,

organizations = organization_ids,
encrypted = True)

4.3. User guide 19



vantage6

Note that a collaboration can require participating organizations to use encryption, by passing the encrypted = True
argument (as we did above) when creating the collaboration. It is recommended to do so, but requires that a keypair
was created when Creating an organization and that each user of that organization has access to the private key so that
they can run the client.setup_encryption(...) command after Authentication.

Registering a node

Here, we again assume that you have a Python session with an authenticated Client object, as created in Authentication,
and that you have a login that has the permissions to create a new node (regular end-users typically do not have these
permissions, this is typically only for administrators).

A node is associated with both a collaboration and an organization (see Vantage6 resources). You will need to find the
collaboration and organization id’s for the node you want to register:

client.organization.list(fields=['id', 'name'])
client.collaboration.list(fields=['id', 'name'])

Then, we register a node with the desired organization and collaboration. In this example, we create a node for the
organization with id 1 and collaboration with id 1.

# A node is associated with both a collaboration and an organization
organization_id = 1
collaboration_id = 1
api_key = client.node.create(collaboration = collaboration_id, organization =␣
→˓organization_id)
print(f"Registered a node for collaboration with id {collaboration_id}, organization␣
→˓with id {organization_id}. The API key that was generated for this node was {api_key}")

Remember to save the api_key that is returned here, since you will need it when you Configure the node.

Creating a task

Preliminaries

Here we assume that

• you have a Python session with an authenticated Client object, as created in Authentication.

• you already have the algorithm you want to run available as a container in a docker registry (see here for more
details on developing your own algorithm)

• the nodes are configured to look at the right database

In this manual, we’ll use the averaging algorithm from harbor2.vantage6.ai/demo/average, so the second re-
quirement is met. We’ll assume the nodes in your collaboration have been configured to look as something like:

databases:
- label: default
uri: /path/to/my/example.csv
type: csv

- label: my_other_database
uri: /path/to/my/example2.csv
type: excel

20 Chapter 4. Index

https://vantage6.discourse.group/t/developing-a-new-algorithm/31


vantage6

The third requirement is met when all nodes have the same labels in their configuration. As an end-user running
the algorithm, you’ll need to align with the node owner about which database name is used for the database you are
interested in. For more details, see how to configure your node.

Determining which collaboration / organizations to create a task for

First, you’ll want to determine which collaboration to submit this task to, and which organizations from this collabora-
tion you want to be involved in the analysis

>>> client.collaboration.list(fields=['id', 'name', 'organizations'])
[
{'id': 1, 'name': 'example_collab1',
'organizations': [

{'id': 2, 'link': '/api/organization/2', 'methods': ['GET', 'PATCH']},
{'id': 3, 'link': '/api/organization/3', 'methods': ['GET', 'PATCH']},
{'id': 4, 'link': '/api/organization/4', 'methods': ['GET', 'PATCH']}

]}
]

In this example, we see that the collaboration called example_collab1 has three organizations associated with it, of
which the organization id’s are 2, 3 and 4. To figure out the names of these organizations, we run:

>>> client.organization.list(fields=['id', 'name'])
[{'id': 1, 'name': 'root'}, {'id': 2, 'name': 'example_org1'},
{'id': 3, 'name': 'example_org2'}, {'id': 4, 'name': 'example_org3'}]

i.e. this collaboration consists of the organizations example_org1 (with id 2), example_org2 (with id 3) and
example_org3 (with id 4).

Creating a task that runs the central algorithm

Now, we have two options: create a task that will run the central part of an algorithm (which runs on one node and
may spawns subtasks on other nodes), or create a task that will (only) run the partial methods (which are run on each
node). Typically, the partial methods only run the node local analysis (e.g. compute the averages per node), whereas
the central methods performs aggregation of those results as well (e.g. starts the partial analyses and then computes the
overall average). First, let us create a task that runs the central part of the harbor2.vantage6.ai/demo/average
algorithm:

input_ = {
'method': 'central_average',
'kwargs': {'column_name': 'age'}

}

average_task = client.task.create(
collaboration=1,
organizations=[2,3],
name="an-awesome-task",
image="harbor2.vantage6.ai/demo/average",
description='',
input_=input_,
databases=[

{'label': 'default'}
]

)

Note that the kwargs we specified in the input_ are specific to this algorithm: this algorithm expects an argument
column_name to be defined, and will compute the average over the column with that name. Furthermore, note that

4.3. User guide 21



vantage6

here we created a task for collaboration with id 1 (i.e. our example_collab1) and the organizations with id 2 and
3 (i.e. example_org1 and example_org2). I.e. the algorithm need not necessarily be run on all the organizations
involved in the collaboration.

Finally, note that you should provide any databases that you want to use via the databases argument. In the example
above, we use the default database; using the my_other_database database can be done by simply specifying that
label in the dictionary. If you have a SQL or SPARQL database, you should also provide a query argument, e.g.

databases=[
{'label': 'default', 'query': 'SELECT * FROM my_table'}

]

Similarly, you can define a sheet_name for Excel databases if you want to read data from a specific worksheet. Check
help(client.task.create) for more information.

Creating a task that runs the partial algorithm

You might be interested to know output of the partial algorithm (in this example: the averages for the ‘age’ column for
each node). In that case, you can run only the partial algorithm, omitting the aggregation that the central part of the
algorithm will normally do:

input_ = {
'method': 'partial_average',
'kwargs': {'column_name': 'age'},

}

average_task = client.task.create(collaboration=1,
organizations=[2,3],
name="an-awesome-task",
image="harbor2.vantage6.ai/demo/average",
description='',
input_=input_)

Inspecting the results

Of course, it will take a little while to run your algorithm. You can use the following code snippet to run a loop that
checks the server every 3 seconds to see if the task has been completed:

print("Waiting for results")
task_id = average_task['id']
result = client.wait_for_results(task_id)

You can also check the status of the task using:

task_info = client.task.get(task_id, include_results=True)

and then retrieve the results

result_info = client.result.from_task(task_id=task_id)

The number of results may be different depending on what you run, but for the central average algorithm in this example,
the results would be:

>>> result_info
[{'average': 53.25}]

while for the partial algorithms, dispatched to two nodes, the results would be:

22 Chapter 4. Index



vantage6

>>> result_info
[{'sum': 253, 'count': 4}, {'sum': 173, 'count': 4}]

4.3.3 R client

Warning: We discourage the use of the R client. It is not actively maintained and is not fully implemented. It can
not (yet) be used to manage resources, such as creating and deleting users and organizations.

4.3.3.1 Install

You can install the R client by running:

devtools::install_github('IKNL/vtg')

4.3.3.2 Use

The R client can only create tasks and retrieve their results.

Initialization of the R client can be done by:

setup.client <- function() {
# Username/password should be provided by the administrator of
# the server.
username <- "username@example.com"
password <- "password"

host <- 'https://cotopaxi.vantage6.ai:443'
api_path <- ''

# Create the client & authenticate
client <- vtg::Client$new(host, api_path=api_path)
client$authenticate(username, password)

return(client)
}

# Create a client
client <- setup.client()

Then, this client can be used for the different algorithms. Refer to the README in the repository on how to call the
algorithm. Usually this includes installing some additional client-side packages for the specific algorithm you are using.

4.3. User guide 23



vantage6

Example

This example shows how to run the vantage6 implementation of a federated Cox Proportional Hazard regression model.
First you need to install the client side of the algorithm by:

devtools::install_github('iknl/vtg.coxph', subdir="src")

This is the code to run the coxph:

print( client$getCollaborations() )

# Should output something like this:
# id name
# 1 1 ZEPPELIN
# 2 2 PIPELINE

# Select a collaboration
client$setCollaborationId(1)

# Define explanatory variables, time column and censor column
expl_vars <- c("Age","Race2","Race3","Mar2","Mar3","Mar4","Mar5","Mar9",

"Hist8520","hist8522","hist8480","hist8501","hist8201",
"hist8211","grade","ts","nne","npn","er2","er4")

time_col <- "Time"
censor_col <- "Censor"

# vtg.coxph contains the function `dcoxph`.
result <- vtg.coxph::dcoxph(client, expl_vars, time_col, censor_col)

4.3.4 API

The API can be called via HTTP requests from a programming language of your choice. You can explore how to use
the server API on https://<serverdomain>/apidocs (e.g. https://cotopaxi.vantage6.ai/apidocs for our Cotopaxi
server). This page will show you which API endpoints exist and how you can use them.

4.4 Node admin guide

This section shows you how you can set up your own vantage6 node. First, we discuss the requirements for your node
machine, then guide you through the installation process. Finally, we explain how to configure and start your node.

4.4.1 Introduction

The vantage6 node is the software that runs on the machine of the data owner. It is responsible for the execution of the
federated learning tasks and the communication with the central server.

Each organization that is involved in a federated learning collaboration has its own node in that collaboration. They
should therefore install the node software on a virtual machine hosted in their own infrastructure. The node should
have access to the data that is used in the federated learning collaboration.

The following pages explain how to install and run the node software.

24 Chapter 4. Index

https://cotopaxi.vantage6.ai/apidocs


vantage6

4.4.2 Requirements

Note: This section is almost the same as the server requirements section - their requirements are very similar.

Below are the minimal requirements for vantage6 infrastructure components. Note that these are recommendations: it
may also work on other hardware, operating systems, versions of Python etc. (but they are not tested as much).

Hardware

• x86 CPU architecture + virtualization enabled

• 1 GB memory

• 50GB+ storage

• Stable and fast (1 Mbps+ internet connection)

Software

• Operating system: Ubuntu 18.04+ , MacOS Big Sur+, Windows 10+

• Python

• Docker

Note: For the server, Ubuntu is highly recommended. It is possible to run a development server (using v6 server start)
on Windows or MacOS, but for production purposes we recommend using Ubuntu.

Warning: The hardware requirements of the node also depend on the algorithms that the node will run. For
example, you need much less compute power for a descriptive statistical algorithm than for a machine learning
model.

4.4.2.1 Python

Installation of any of the vantage6 packages requires Python 3.10. For installation instructions, see python.org, ana-
conda.com or use the package manager native to your OS and/or distribution.

Note: We recommend you install vantage6 in a new, clean Python (Conda) environment.

Higher versions of Python (3.11+) will most likely also work, as might lower versions (3.8 or 3.9). However, we develop
and test vantage6 on version 3.10, so that is the safest choice.

Warning: Note that Python 3.10 is only used in vantage6 versions 3.8.0 and higher. In lower versions, Python 3.7
is required.

4.4. Node admin guide 25

https://python.org
https://anaconda.com
https://anaconda.com


vantage6

4.4.2.2 Docker

Docker facilitates encapsulation of applications and their dependencies in packages that can be easily distributed to di-
verse systems. Algorithms are stored in Docker images which nodes can download and execute. Besides the algorithms,
both the node and server are also running from a docker container themselves.

Please refer to this page on how to install Docker. To verify that Docker is installed and running you can run the
hello-world example from Docker.

docker run hello-world

Warning: Note that for Linux, some post-installation steps may be required. Vantage6 needs to be able to run
docker without sudo, and these steps ensure just that.

For Windows, if you are using Docker Desktop, it may be preferable to limit the amount of memory Docker can
use - in some cases it may otherwise consume much memory and slow down the system. This may be achieved as
described here.

Note:

• Always make sure that Docker is running while using vantage6!

• We recommend to always use the latest version of Docker.

4.4.3 Install

To install the vantage6 node make sure you have met the requirements. Then, we provide a command-line interface
(CLI) with which you can manage your node. The CLI is a Python package that can be installed using pip. We always
recommend to install the CLI in a virtual environment or a conda environment.

Run this command to install the CLI in your environment:

pip install vantage6

Or if you want to install a specific version:

pip install vantage6==x.y.z

You can verify that the CLI has been installed by running the command v6 node --help. If that prints a list of
commands, the installation is completed.

The next pages will explain to configure, start and stop the node. The node software itself will be downloaded when
you start the node for the first time.

26 Chapter 4. Index

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://stackoverflow.com/questions/62405765/memory-allocation-to-docker-containers-after-moving-to-wsl-2-in-windows
https://docs.python.org/3/tutorial/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html


vantage6

4.4.4 Use

This section explains which commands are available to manage your node.

4.4.4.1 Quick start

To create a new node, run the command below. A menu will be started that allows you to set up a node configuration
file. For more details, check out the Configure section.

v6 node new

To run a node, execute the command below. The --attach flag will cause log output to be printed to the console.

v6 node start --name <your_node> --attach

Finally, a node can be stopped again with:

v6 node stop --name <your_node>

Note: Before the node is started, it is attempted to obtain the server version. For a server of version x.y.z, a node of
version x.y.<latest> is started - this is the latest available node version for the server version. If no server version
can be obtained, the latest node of the same major version as the command-line interface installation is started.

4.4.4.2 Available commands

Below is a list of all commands you can run for your node(s). To see all available options per command use the --help
flag, i.e. v6 node start --help .

Command Description
v6 node new Create a new node configuration file
v6 node start Start a node
v6 node stop Stop a nodes
v6 node files List the files of a node (e.g. config and log files)
v6 node attach Print the node logs to the console
v6 node list List all existing nodes
v6 node create-private-key Create and upload a new public key for your organization
v6 node set-api-key Update the API key in your node configuration file

Local test setup

Check the section on Local test setup of the server if you want to run both the node and server on the same machine.

4.4. Node admin guide 27



vantage6

4.4.5 Configure

The vantage6-node requires a configuration file to run. This is a yaml file with a specific format.

The next sections describes how to configure the node. It first provides a few quick answers on setting up your node,
then shows an example of all configuration file options, and finally explains where your vantage6 configuration files
are stored.

4.4.5.1 How to create a configuration file

The easiest way to create an initial configuration file is via: v6 node new. This allows you to configure the basic
settings. For more advanced configuration options, which are listed below, you can view the example configuration
file.

4.4.5.2 Where is my configuration file?

To see where your configuration file is located, you can use the following command

v6 node files

Warning: This command will not work if you have put your configuration file in a custom location. Also, you
may need to specify the --system flag if you put your configuration file in the system folder.

4.4.5.3 All configuration options

The following configuration file is an example that intends to list all possible configuration options.

You can download this file here: node_config.yaml

# API key used to authenticate at the server.
api_key: ***

# URL of the vantage6 server
server_url: https://cotopaxi.vantage6.ai

# port the server listens to
port: 443

# API path prefix that the server uses. Usually '/api' or an empty string
api_path: ''

# subnet of the VPN server
vpn_subnet: 10.76.0.0/16

# set the devices the algorithm container is allowed to request.
algorithm_device_requests:
gpu: false

# Add additional environment variables to the algorithm containers. In case
# you want to supply database specific environment (e.g. usernames and

(continues on next page)

28 Chapter 4. Index



vantage6

(continued from previous page)

# passwords) you should use `env` key in the `database` section of this
# configuration file.
# OPTIONAL
algorithm_env:

# in this example the environment variable 'player' has
# the value 'Alice' inside the algorithm container
player: Alice

# Add additional environment variables to the node container. This can be useful
# if you need to modify the configuration of certain python libraries that the
# node uses. For example, if you want to use a custom CA bundle for the requests
# library you can specify it here.
node_extra_env:
REQUESTS_CA_BUNDLE: /etc/ssl/certs/ca-certificates.crt

# Add additional volumes to the node container. This can be useful if you need
# to mount a custom CA bundle for the requests library for example.
node_extra_mounts:
- /etc/ssl/certs/ca-certificates.crt:/etc/ssl/certs/ca-certificates.crt:ro

node_extra_hosts:
# In Linux (no Docker Desktop) you can use this (special) mapping to access
# the host from the node.
# See: https://docs.docker.com/reference/cli/docker/container/run/#add-host
host.docker.internal: host-gateway
# For testing purposes, it can also be used to map a public domain to a
# private IP address, allowing you to avoid breaking TLS hostname verification
v6server.example.com: 192.168.1.10

# specify custom Docker images to use for starting the different
# components.
# OPTIONAL
images:
node: harbor2.vantage6.ai/infrastructure/node:cotopaxi
alpine: harbor2.vantage6.ai/infrastructure/alpine
vpn_client: harbor2.vantage6.ai/infrastructure/vpn_client
network_config: harbor2.vantage6.ai/infrastructure/vpn_network
ssh_tunnel: harbor2.vantage6.ai/infrastructure/ssh_tunnel
squid: harbor2.vantage6.ai/infrastructure/squid

# path or endpoint to the local data source. The client can request a
# certain database by using its label. The type is used by the
# auto_wrapper method used by algorithms. This way the algorithm wrapper
# knows how to read the data from the source. The auto_wrapper currently
# supports: 'csv', 'parquet', 'sql', 'sparql', 'excel', 'omop'. If your
# algorithm does not use the wrapper and you have a different type of
# data source you can specify 'other'.
databases:
- label: default
uri: C:\data\datafile.csv
type: csv

(continues on next page)

4.4. Node admin guide 29



vantage6

(continued from previous page)

- label: omop
uri: jdbc:postgresql://host.docker.internal:5454/postgres
type: omop
# additional environment variables that are passed to the algorithm
# containers (or their wrapper). This can be used to for usernames
# and passwords for example. Note that these environment variables are
# only passed to the algorithm container when the user requests that
# database. In case you want to pass some environment variable to all
# algorithms regard less of the data source the user specifies you can
# use the `algorithm_env` setting.
env:
user: admin@admin.com
password: admin
dbms: postgresql
cdm_database: postgres
cdm_schema: public
results_schema: results

# end-to-end encryption settings
encryption:

# whenever encryption is enabled or not. This should be the same
# as the `encrypted` setting of the collaboration to which this
# node belongs.
enabled: false

# location to the private key file
private_key: /path/to/private_key.pem

# Define who is allowed to run which algorithms on this node.
policies:
# Control which algorithm images are allowed to run on this node. This is
# expected to be a valid regular expression.
allowed_algorithms:
- ^harbor2\.vantage6\.ai/[a-zA-Z]+/[a-zA-Z]+
- ^myalgorithm\.ai/some-algorithm

# Define which users are allowed to run algorithms on your node by their ID
allowed_users:
- 2

# Define which organizations are allowed to run images on your node by
# their ID or name
allowed_organizations:
- 6
- root

# The basics algorithm (harbor2.vantage5.ai/algorithms/basics) is whitelisted
# by default. It is used to collect column names in the User Interface to
# facilitate task creation. Set to false to disable this.
allow_basics_algorithm: true

(continues on next page)

30 Chapter 4. Index



vantage6

(continued from previous page)

# credentials used to login to private Docker registries
docker_registries:
- registry: docker-registry.org
username: docker-registry-user
password: docker-registry-password

# Create SSH Tunnel to connect algorithms to external data sources. The
# `hostname` and `tunnel:bind:port` can be used by the algorithm
# container to connect to the external data source. This is the address
# you need to use in the `databases` section of the configuration file!
ssh-tunnels:

# Hostname to be used within the internal network. I.e. this is the
# hostname that the algorithm uses to connect to the data source. Make
# sure this is unique and the same as what you specified in the
# `databases` section of the configuration file.
- hostname: my-data-source

# SSH configuration of the remote machine
ssh:

# Hostname or ip of the remote machine, in case it is the docker
# host you can use `host.docker.internal` for Windows and MacOS.
# In the case of Linux you can use `172.17.0.1` (the ip of the
# docker bridge on the host)
host: host.docker.internal
port: 22

# fingerprint of the remote machine. This is used to verify the
# authenticity of the remote machine.
fingerprint: "ssh-rsa ..."

# Username and private key to use for authentication on the remote
# machine
identity:
username: username
key: /path/to/private_key.pem

# Once the SSH connection is established, a tunnel is created to
# forward traffic from the local machine to the remote machine.
tunnel:

# The port and ip on the tunnel container. The ip is always
# 0.0.0.0 as we want the algorithm container to be able to
# connect.
bind:
ip: 0.0.0.0
port: 8000

# The port and ip on the remote machine. If the data source runs
# on this machine, the ip most likely is 127.0.0.1.
dest:

(continues on next page)

4.4. Node admin guide 31



vantage6

(continued from previous page)

ip: 127.0.0.1
port: 8000

# Whitelist URLs and/or IP addresses that the algorithm containers are
# allowed to reach using the http protocol.
whitelist:
domains:
- google.com
- github.com
- host.docker.internal # docker host ip (windows/mac)

ips:
- 172.17.0.1 # docker bridge ip (linux)
- 8.8.8.8

ports:
- 443

# Containers that are defined here are linked to the algorithm containers and
# can therefore be accessed when by the algorithm when it is running. Note that
# for using this option, the container with 'container_name' should already be
# started before the node is started.
docker_services:

container_label: container_name

# Settings for the logger
logging:
# Controls the logging output level. Could be one of the following
# levels: CRITICAL, ERROR, WARNING, INFO, DEBUG, NOTSET
level: DEBUG

# whenever the output needs to be shown in the console
use_console: true

# The number of log files that are kept, used by RotatingFileHandler
backup_count: 5

# Size kb of a single log file, used by RotatingFileHandler
max_size: 1024

# Format: input for logging.Formatter,
format: "%(asctime)s - %(name)-14s - %(levelname)-8s - %(message)s"
datefmt: "%Y-%m-%d %H:%M:%S"

# (optional) set the individual log levels per logger name, for example
# mute some loggers that are too verbose.
loggers:
- name: urllib3
level: warning

- name: requests
level: warning

- name: engineio.client
level: warning

- name: docker.utils.config

(continues on next page)

32 Chapter 4. Index



vantage6

(continued from previous page)

level: warning
- name: docker.auth
level: warning

# Additional debug flags
debug:

# Set to `true` to enable the Flask/socketio into debug mode.
socketio: false

# Set to `true` to set the Flask app used for the LOCAL proxy service
# into debug mode
proxy_server: false

# directory where local task files (input/output) are stored
task_dir: C:\Users\<your-user>\AppData\Local\vantage6\node\mydir

# Whether or not your node shares some configuration (e.g. which images are
# allowed to run on your node) with the central server. This can be useful
# for other organizations in your collaboration to understand why a task
# is not completed. Obviously, no sensitive data is shared. Default true
share_config: true

4.4.5.4 Configuration file location

The directory where the configuration file is stored depends on your operating system (OS). It is possible to store the
configuration file at system or at user level. By default, node configuration files are stored at user level, which makes
this configuration available only for your user.

The default directories per OS are as follows:

Operating
System

System-folder User-folder

Windows C:\ProgramData\vantage\node\ C:\Users\<user>\AppData\Local\vantage\
node\

MacOS /Library/Application/Support/
vantage6/node/

/Users/<user>/Library/Application
Support/vantage6/node/

Linux /etc/vantage6/node/ /home/<user>/.config/vantage6/node/

Note: The command v6 node looks in these directories by default. However, it is possible to use any directory and
specify the location with the --config flag. But note that doing that requires you to specify the --config flag every
time you execute a v6 node command!

Similarly, you can put your node configuration file in the system folder by using the --system flag. Note that in that
case, you have to specify the --system flag for all v6 node commands.

4.4. Node admin guide 33



vantage6

4.4.5.5 Security

As a data owner it is important that you take the necessary steps to protect your data. Vantage6 allows algorithms to
run on your data and share the results with other parties. It is important that you review the algorithms before allowing
them to run on your data.

Once you approved the algorithm, it is important that you can verify that the approved algorithm is the algorithm that
runs on your data. There are two important steps to be taken to accomplish this:

• Set the (optional) allowed_algorithms option in the policies section of the node-configuration file. You
can specify a list of regex expressions here. Some examples of what you could define:

1. ^harbor2\.vantage6\.ai/[a-zA-Z]+/[a-zA-Z]+: allow all images from the vantage6 registry

2. ^harbor2\.vantage6\.ai/algorithms/glm$: only allow the GLM image, but all builds of this image

3. ^harbor2\.vantage6\.ai/algorithms/glm@sha256:82becede498899ec668628e7cb0ad87b6e1c371cb8
a1e597d83a47fac21d6af3$: allows only this specific build from the GLM image to run on your data

• Enable DOCKER_CONTENT_TRUST to verify the origin of the image. For more details see the documentation from
Docker.

Warning: By enabling DOCKER_CONTENT_TRUST you might not be able to use certain algorithms. You can check
this by verifying that the images you want to be used are signed.

4.4.5.6 Logging

To configure the logger, look at the logging section in the example configuration file in All configuration options.

Useful commands:

1. v6 node files: shows you where the log file is stored

2. v6 node attach: shows live logs of a running server in your current console. This can also be achieved when
starting the node with v6 node start --attach

4.5 Server admin guide

This section shows you how you can set up your own vantage6 server. First, we discuss the requirements for your server
machine, then guide you through the installation process. Finally, we explain how to configure and start your server.

4.5.1 Introduction

The vantage6 server is the central component of the vantage6 platform. It is responsible for managing the different
organizations and their nodes, authenticating and authorizing the users and nodes, and managing the communication
of task requests and results between the nodes and the users.

All communication in vantage6 is managed through the server’s RESTful API and socketIO server. There are also a
couple of other services that you may want to run alongside the server, such as a user interface and a message broker.

The following pages explain how to install and configure the server, and how to run a test server or deploy a production
server. It also explains which optional services you may want to run alongside the server, and how to configure them.

34 Chapter 4. Index

https://docs.docker.com/engine/security/trust/
https://docs.docker.com/engine/security/trust/


vantage6

4.5.2 Requirements

Note: This section is almost the same as the node requirements section - their requirements are very similar.

Below are the minimal requirements for vantage6 infrastructure components. Note that these are recommendations: it
may also work on other hardware, operating systems, versions of Python etc. (but they are not tested as much).

Hardware

• x86 CPU architecture + virtualization enabled

• 1 GB memory

• 50GB+ storage

• Stable and fast (1 Mbps+ internet connection)

Note that the server’s IP address should also be reachable by all users and nodes. This will usually be a public IP
address.

Software

• Operating system: Ubuntu 18.04+

• Python

• Docker

Note: For the server, Ubuntu is highly recommended. It is possible to run a development server (using v6 server start)
on Windows or MacOS, but for production purposes we recommend using Ubuntu.

Warning: The hardware requirements of the node also depend on the algorithms that the node will run. For
example, you need much less compute power for a descriptive statistical algorithm than for a machine learning
model.

4.5.2.1 Python

Installation of any of the vantage6 packages requires Python 3.10. For installation instructions, see python.org, ana-
conda.com or use the package manager native to your OS and/or distribution.

Note: We recommend you install vantage6 in a new, clean Python (Conda) environment.

Higher versions of Python (3.11+) will most likely also work, as might lower versions (3.8 or 3.9). However, we develop
and test vantage6 on version 3.10, so that is the safest choice.

Warning: Note that Python 3.10 is only used in vantage6 versions 3.8.0 and higher. In lower versions, Python 3.7
is required.

4.5. Server admin guide 35

https://python.org
https://anaconda.com
https://anaconda.com


vantage6

4.5.2.2 Docker

Docker facilitates encapsulation of applications and their dependencies in packages that can be easily distributed to di-
verse systems. Algorithms are stored in Docker images which nodes can download and execute. Besides the algorithms,
both the node and server are also running from a docker container themselves.

Please refer to this page on how to install Docker. To verify that Docker is installed and running you can run the
hello-world example from Docker.

docker run hello-world

Warning: Note that for Linux, some post-installation steps may be required. Vantage6 needs to be able to run
docker without sudo, and these steps ensure just that.

For Windows, if you are using Docker Desktop, it may be preferable to limit the amount of memory Docker can
use - in some cases it may otherwise consume much memory and slow down the system. This may be achieved as
described here.

Note:

• Always make sure that Docker is running while using vantage6!

• We recommend to always use the latest version of Docker.

4.5.3 Install

4.5.3.1 Local (test) Installation

To install the vantage6 server, make sure you have met the requirements. Then, we provide a command-line interface
(CLI) with which you can manage your server. The CLI is a Python package that can be installed using pip. We always
recommend to install the CLI in a virtual environment or a conda environment.

Run this command to install the CLI in your environment:

pip install vantage6

Or if you want to install a specific version:

pip install vantage6==x.y.z

You can verify that the CLI has been installed by running the command v6 --help. If that prints a list of commands,
the installation is completed.

The server software itself will be downloaded when you start the server for the first time.

36 Chapter 4. Index

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://stackoverflow.com/questions/62405765/memory-allocation-to-docker-containers-after-moving-to-wsl-2-in-windows
https://docs.python.org/3/tutorial/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html


vantage6

4.5.3.2 Hosting your server

To host your server, we recommend to use the Docker image we provide: harbor2.vantage6.ai/infrastructure/
server. Running this docker image will start the server. Check the deployment section for deployment examples.

Note: We recommend to use the latest version. Should you have reasons to deploy an older VERSION, use the image
harbor2.vantage6.ai/infrastructure/server:<VERSION>.

4.5.4 Deploy

The vantage6 server is a Flask application, that uses python-socketio for socketIO connections. The server runs as a
standalone process (listening on its own ip address/port).

There are many deployment options. We simply provide a few examples.

• NGINX

• Docker compose

• . . .

Note: Because the server uses socketIO to exchange messages with the nodes and users, it is not trivial to horizontally
scale the server. To prevent that socket messages get lost, you should deploy a RabbitMQ service and configure the
server to use it. This section explains how to do so.

4.5.4.1 NGINX

A basic setup is shown below. Note that SSL is not configured in this example.

server {

# Public port
listen 80;
server_name _;

# vantage6-server. In the case you use a sub-path here, make sure
# to foward also it to the proxy_pass
location /subpath {

include proxy_params;

# internal ip and port
proxy_pass http://127.0.0.1:5000/subpath;

}

# Allow the websocket traffic
location /socket.io {

include proxy_params;
proxy_http_version 1.1;
proxy_buffering off;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";

(continues on next page)

4.5. Server admin guide 37

https://python-socketio.readthedocs.io


vantage6

(continued from previous page)

proxy_pass http://127.0.0.1:5000/socket.io;
}

}

Note: When you Configure the server, make sure to include the /subpath that has been set in the NGINX configuration
into the api_path setting (e.g. api_path: /subpath/api)

4.5.4.2 Docker compose

An alternative to v6 server start is to use docker-compose. Below is an example of a docker-compose.yml file
that may be used to start the server. Obviously, you may want to change this to your own situtation. For example, you
may want to use a different image tag, or you may want to use a different port.

services:
vantage6-server:
image: harbor2.vantage6.ai/infrastructure/server:cotopaxi
ports:
- "8000:5000"
volumes:
- /path/to/my/server.yaml:/mnt/config.yaml
command: ["/bin/bash", "-c", "/vantage6/vantage6-server/server.sh"]

4.5.5 Install optional components

There are several optional components that you can set up apart from the vantage6 server itself.

User Interface
An application that will allow your server’s users to interact more easily with your vantage6 server.

Docker registry
A (private) Docker registry can be used to store algorithms but it is also possible to use the (public) Docker hub
to upload your Docker images. For production scenarios, we recommend using a private registry.

EduVPN
If you want to enable algorithm containers that are running on different nodes, to directly communicate with one
another, you require a VPN server.

RabbitMQ
If you have a server with a high workload whose performance you want to improve, you may want to set up a
RabbitMQ service which enables horizontal scaling of the Vantage6 server.

SMTP server
If you want to send emails to your users, e.g. to help them reset their password, you need to set up an SMTP
server.

Below, we explain how to install and deploy these components.

38 Chapter 4. Index

https://hub.docker.com/


vantage6

4.5.5.1 User Interface

The User Interface (UI) is a web application that will make it easier for your users to interact with the server. It allows
you to manage all your resources (such as creating collaborations, editing users, or viewing tasks), except for creating
new tasks. We aim to incorporate this functionality in the near future.

To run the UI, we also provide a Docker image. Below is an example of how you may deploy a UI using Docker
compose; obviously, you may need to adjust the configuration to your own environment.

name: run-ui
services:
ui:
image: harbor2.vantage6.ai/infrastructure/ui:cotopaxi
ports:
- "8000:80"

environment:
- SERVER_URL=https://<url_to_my_server>
- API_PATH=/api

Alternatively, you can also run the UI locally with Angular. In that case, follow the instructions on the UI Github page

The UI is not compatible with older versions (<3.3) of vantage6.

Fig. 4.4: Screenshot of the vantage6 UI

4.5. Server admin guide 39

https://github.com/vantage6/vantage6/vantage6-ui


vantage6

4.5.5.2 Docker registry

A Docker registry or repository provides storage and versioning for Docker images. Installing a private Docker registry
is useful if you don’t want to share your algorithms. Also, a private registry may have security benefits, for example,
you can scan your images for vulnerabilities and you can limit the range of IP addresses that the node may access to its
server and the private registry.

Harbor

Our preferred solution for hosting a Docker registry is Harbor. Harbor provides access control, a user interface and
automated scanning on vulnerabilities.

Docker Hub

Docker itself provides a registry as a turn-key solution on Docker Hub. Instructions for setting it up can be found here:
https://hub.docker.com/_/registry.

Note that some features of vantage6, such as timestamp based retrieval of the newest image, or multi-arch images, are
not supported by the Docker Hub registry.

4.5.5.3 EduVPN

EduVPN is an optional server component that enables the use of algorithms that require node-to-node communication.

EduVPN provides an API for the OpenVPN server, which is required for automated certificate retrieval by the nodes.
Like vantage6, it is an open source platform.

The following documentation shows you how to install EduVPN:

• Debian

• Centos

• Fedora

After the installation is done, you need to configure the server to:

1. Enable client-to-client communication. This can be achieved in the configuration file by the clientToClient
setting (see here).

2. Do not block LAN communication (set blockLan to false). This allows your docker subnetworks to continue
to communicate, which is required for vantage6 to function normally.

3. Enable port sharing (Optional). This may be useful if the nodes are behind a strict firewall. Port sharing allows
nodes to connect to the VPN server only using outgoing tcp/443. Be aware that TCP meltdown can occur when
using the TCP protocol for VPN.

4. Create an application account.

Warning: EduVPN enables listening to multiple protocols (UDP/TCP) and ports at the same time. Be aware that
all nodes need to be connected using the same protocol and port in order to communicate with each other.

40 Chapter 4. Index

https://goharbor.io
https://hub.docker.com/_/registry
https://www.eduvpn.org/
https://github.com/eduvpn/documentation/blob/v2/DEPLOY_DEBIAN.md
https://github.com/eduvpn/documentation/blob/v2/DEPLOY_CENTOS.md
https://github.com/eduvpn/documentation/blob/v2/DEPLOY_FEDORA.md
https://github.com/eduvpn/documentation/blob/v2/PROFILE_CONFIG.md
https://github.com/eduvpn/documentation/blob/v2/PORT_SHARING.md
https://openvpn.net/faq/what-is-tcp-meltdown/


vantage6

Warning: The EduVPN server should usually be available to the public internet to allow all nodes to find it.
Therefore, it should be properly secured, for example by closing all public ports (except http/https).

Additionally, you may want to explicitly allow only VPN traffic between nodes, and not between a node and the
VPN server. You can achieve that by updating the firewall rules on your machine.

On Debian machines, these rules can be found in /etc/iptables/rules.v4 and /etc/iptables/rules.v6, on CentOS, Red
Hat Enterprise Linux and Fedora they can be found in /etc/sysconfig/iptables and /etc/sysconfig/ip6tables. You will
have to do the following:
# In the firewall rules, below INPUT in the #SSH section, add this line
# to drop all VPN traffic with the VPN server as final destination:
-I INPUT -i tun+ -j DROP

# We only want to allow nodes to reach other nodes, and not other
# network interfaces available in the VPN.
# To achieve, replace the following rules:
-A FORWARD -i tun+ ! -o tun+ -j ACCEPT
-A FORWARD ! -i tun+ -o tun+ -j ACCEPT
# with:
-A FORWARD -i tun+ -o tun+ -j ACCEPT
-A FORWARD -i tun+ -j DROP

Example configuration

The following configuration makes a server listens to TCP/443 only. Make sure you set clientToClient to true
and blockLan to false. The range needs to be supplied to the node configuration files. Also note that the server
configured below uses port-sharing.

// /etc/vpn-server-api/config.php
<?php

return [
// List of VPN profiles
'vpnProfiles' => [

'internet' => [
// The number of this profile, every profile per instance has a
// unique number
// REQUIRED
'profileNumber' => 1,

// The name of the profile as shown in the user and admin portals
// REQUIRED
'displayName' => 'vantage6 :: vpn service',

// The IPv4 range of the network that will be assigned to clients
// REQUIRED
'range' => '10.76.0.0/16',

// The IPv6 range of the network that will be assigned to clients
// REQUIRED
'range6' => 'fd58:63db:3245:d20d::/64',

// The hostname the VPN client(s) will connect to
(continues on next page)

4.5. Server admin guide 41

https://github.com/eduvpn/documentation/blob/v2/PORT_SHARING.md


vantage6

(continued from previous page)

// REQUIRED
'hostName' => 'eduvpn.vantage6.ai',

// The address the OpenVPN processes will listen on
// DEFAULT = '::'
'listen' => '::',

// The IP address to use for connecting to OpenVPN processes
// DEFAULT = '127.0.0.1'
'managementIp' => '127.0.0.1',

// Whether or not to route all traffic from the client over the VPN
// DEFAULT = false
'defaultGateway' => true,

// Block access to local LAN when VPN is active
// DEFAULT = false
'blockLan' => false,

// IPv4 and IPv6 routes to push to the client, only used when
// defaultGateway is false
// DEFAULT = []
'routes' => [],

// IPv4 and IPv6 address of DNS server(s) to push to the client
// DEFAULT = []
// Quad9 (https://www.quad9.net)
'dns' => ['9.9.9.9', '2620:fe::fe'],

// Whether or not to allow client-to-client traffic
// DEFAULT = false
'clientToClient' => true,

// Whether or not to enable OpenVPN logging
// DEFAULT = false
'enableLog' => false,

// Whether or not to enable ACLs for controlling who can connect
// DEFAULT = false
'enableAcl' => false,

// The list of permissions to allow access, requires enableAcl to
// be true
// DEFAULT = []
'aclPermissionList' => [],

// The protocols and ports the OpenVPN processes should use, MUST
// be either 1, 2, 4, 8 or 16 proto/port combinations
// DEFAULT = ['udp/1194', 'tcp/1194']
'vpnProtoPorts' => [

'tcp/1195',
],

(continues on next page)

42 Chapter 4. Index



vantage6

(continued from previous page)

// List the protocols and ports exposed to the VPN clients. Useful
// for OpenVPN port sharing. When empty (or missing), uses list
// from vpnProtoPorts
// DEFAULT = []
'exposedVpnProtoPorts' => [

'tcp/443',
],

// Hide the profile from the user portal, i.e. do not allow the
// user to choose it
// DEFAULT = false
'hideProfile' => false,

// Protect to TLS control channel with PSK
// DEFAULT = tls-crypt
'tlsProtection' => 'tls-crypt',
//'tlsProtection' => false,

],
],

// API consumers & credentials
'apiConsumers' => [

'vpn-user-portal' => '***',
'vpn-server-node' => '***',

],
];

The following configuration snippet can be used to add an API user. The username and the client_secret have to
be added to the vantage6-server configuration file.

...
'Api' => [
'consumerList' => [
'vantage6-user' => [
'redirect_uri_list' => [
'http://localhost',

],
'display_name' => 'vantage6',
'require_approval' => false,
'client_secret' => '***'

]
]

...

4.5. Server admin guide 43



vantage6

4.5.5.4 RabbitMQ

RabbitMQ is an optional component that enables the server to handle more requests at the same time. This is important
if a server has a high workload.

There are several options to host your own RabbitMQ server. You can run RabbitMQ in Docker or host RabbitMQ on
Azure. When you have set up your RabbitMQ service, you can connect the server to it by adding the following to the
server configuration:

rabbitmq_uri: amqp://<username>:<password>@<hostname>:5672/<vhost>

Be sure to create the user and vhost that you specify exist! Otherwise, you can add them via the RabbitMQ management
console.

4.5.5.5 SMTP server

Some features of the server require an SMTP server to send emails. For example, the server can send an email to a user
when they lost their password. There are many ways to set up an SMTP server, and we will not go into detail here. Just
remember that you need to configure the server to use your SMTP server (see All configuration options).

4.5.6 Use

This section explains which commands are available to manage your server. It also explains how to set up a test server
locally and how to manage resources via an IPython shell.

4.5.6.1 Quick start

To create a new server, run the command below. A menu will be started that allows you to set up a server configuration
file.

v6 server new

For more details, check out the Configure section.

To run a server, execute the command below. The --attach flag will copy log output to the console.

v6 server start --name <your_server> --attach

Warning: When the server is run for the first time, the following user is created:

• username: root

• password: root

It is recommended to change this password immediately.

Finally, a server can be stopped again with:

v6 server stop --name <your_server>

44 Chapter 4. Index

https://hub.docker.com/_/rabbitmq
https://www.golinuxcloud.com/install-rabbitmq-on-azure/
https://www.golinuxcloud.com/install-rabbitmq-on-azure/
https://www.cloudamqp.com/blog/part3-rabbitmq-for-beginners_the-management-interface.html
https://www.cloudamqp.com/blog/part3-rabbitmq-for-beginners_the-management-interface.html


vantage6

4.5.6.2 Available commands

The following commands are available in your environment. To see all the options that are available per command use
the --help flag, e.g. v6 server start --help.

Command Description
v6 server new Create a new server configuration file
v6 server start Start a server
v6 server stop Stop a server
v6 server files List the files that a server is using
v6 server attach Show a server’s logs in the current terminal
v6 server list List the available server instances
v6 server shell Run a server instance python shell
v6 server import Import server entities as a batch
v6 server version Shows the versions of all the components of the running server

4.5.6.3 Local test setup

If the nodes and the server run at the same machine, you have to make sure that the node can reach the server.

Windows and MacOS

Setting the server IP to 0.0.0.0 makes the server reachable at your localhost (this is also the case when the dockerized
version is used). In order for the node to reach this server, set the server_url setting to host.docker.internal.

Warning: On the M1 mac the local server might not be reachable from your nodes as host.docker.internal
does not seem to refer to the host machine. Reach out to us on Discourse for a solution if you need this!

Linux

You should bind the server to 0.0.0.0. In the node configuration files, you can then use http://172.17.0.1,
assuming you use the default docker network settings.

4.5.6.4 Batch import

You can easily create a set of test users, organizations and collaborations by using a batch import. To do this, use the
v6 server import /path/to/file.yaml command. An example yaml file is provided below.

You can download this file here.

organizations:

- name: IKNL
domain: iknl.nl
address1: Godebaldkwartier 419
address2:
zipcode: 3511DT
country: Netherlands
users:
- username: admin
firstname: admin
lastname: robot

(continues on next page)

4.5. Server admin guide 45



vantage6

(continued from previous page)

password: password
- username: frank@iknl.nl
firstname: Frank
lastname: Martin
password: password

- username: melle@iknl.nl
firstname: Melle
lastname: Sieswerda
password: password

public_key:␣
→˓LS0tLS1CRUdJTiBQVUJMSUMgS0VZLS0tLS0KTUlJQ0lqQU5CZ2txaGtpRzl3MEJBUUVGQUFPQ0FnOEFNSUlDQ2dLQ0FnRUF2eU4wWVZhWWVZcHVWRVlpaDJjeQphTjdxQndCUnB5bVVibnRQNmw2Vk9OOGE1eGwxMmJPTlQyQ1hwSEVGUFhZQTFFZThQRFZwYnNQcVVKbUlseWpRCkgyN0NhZTlIL2lJbUNVNnViUXlnTzFsbG1KRTJQWDlTNXVxendVV3BXMmRxRGZFSHJLZTErUUlDRGtGSldmSEIKWkJkczRXMTBsMWlxK252dkZ4OWY3dk8xRWlLcVcvTGhQUS83Mm52YlZLMG9nRFNaUy9Jc1NnUlk5ZnJVU1FZUApFbGVZWUgwYmI5VUdlNUlYSHRMQjBkdVBjZUV4dXkzRFF5bXh2WTg3bTlkelJsN1NqaFBqWEszdUplSDAwSndjCk80TzJ0WDVod0lLL1hEQ3h4eCt4b3cxSDdqUWdXQ0FybHpodmdzUkdYUC9wQzEvL1hXaVZSbTJWZ3ZqaXNNaisKS2VTNWNaWWpkUkMvWkRNRW1QU29rS2Y4UnBZUk1lZk0xMWtETTVmaWZIQTlPcmY2UXEyTS9SMy90Mk92VDRlRgorUzVJeTd1QWk1N0ROUkFhejVWRHNZbFFxTU5QcUpKYlRtcGlYRWFpUHVLQitZVEdDSC90TXlrRG1JK1dpejNRCjh6SVo1bk1IUnhySFNqSWdWSFdwYnZlTnVaL1Q1aE95aE1uZHU0c3NpRkJyUXN5ZGc1RlVxR3lkdE1JMFJEVHcKSDVBc1ovaFlLeHdiUm1xTXhNcjFMaDFBaDB5SUlsZDZKREY5MkF1UlNTeDl0djNaVWRndEp5VVlYN29VZS9GKwpoUHVwVU4rdWVTUndGQjBiVTYwRXZQWTdVU2RIR1diVVIrRDRzTVQ4Wjk0UVl2S2ZCanU3ZXVKWSs0Mmd2Wm9jCitEWU9ZS05qNXFER2V5azErOE9aTXZNQ0F3RUFBUT09Ci0tLS0tRU5EIFBVQkxJQyBLRVktLS0tLQo=

- name: Small Organization
domain: small-organization.example
address1: Big Ambitions Drive 4
address2:
zipcode: 1234AB
country: Nowhereland
users:
- username: admin@small-organization.example
firstname: admin
lastname: robot
password: password

- username: stan
firstname: Stan
lastname: the man
password: password

public_key:␣
→˓LS0tLS1CRUdJTiBQVUJMSUMgS0VZLS0tLS0KTUlJQ0lqQU5CZ2txaGtpRzl3MEJBUUVGQUFPQ0FnOEFNSUlDQ2dLQ0FnRUF2eU4wWVZhWWVZcHVWRVlpaDJjeQphTjdxQndCUnB5bVVibnRQNmw2Vk9OOGE1eGwxMmJPTlQyQ1hwSEVGUFhZQTFFZThQRFZwYnNQcVVKbUlseWpRCkgyN0NhZTlIL2lJbUNVNnViUXlnTzFsbG1KRTJQWDlTNXVxendVV3BXMmRxRGZFSHJLZTErUUlDRGtGSldmSEIKWkJkczRXMTBsMWlxK252dkZ4OWY3dk8xRWlLcVcvTGhQUS83Mm52YlZLMG9nRFNaUy9Jc1NnUlk5ZnJVU1FZUApFbGVZWUgwYmI5VUdlNUlYSHRMQjBkdVBjZUV4dXkzRFF5bXh2WTg3bTlkelJsN1NqaFBqWEszdUplSDAwSndjCk80TzJ0WDVod0lLL1hEQ3h4eCt4b3cxSDdqUWdXQ0FybHpodmdzUkdYUC9wQzEvL1hXaVZSbTJWZ3ZqaXNNaisKS2VTNWNaWWpkUkMvWkRNRW1QU29rS2Y4UnBZUk1lZk0xMWtETTVmaWZIQTlPcmY2UXEyTS9SMy90Mk92VDRlRgorUzVJeTd1QWk1N0ROUkFhejVWRHNZbFFxTU5QcUpKYlRtcGlYRWFpUHVLQitZVEdDSC90TXlrRG1JK1dpejNRCjh6SVo1bk1IUnhySFNqSWdWSFdwYnZlTnVaL1Q1aE95aE1uZHU0c3NpRkJyUXN5ZGc1RlVxR3lkdE1JMFJEVHcKSDVBc1ovaFlLeHdiUm1xTXhNcjFMaDFBaDB5SUlsZDZKREY5MkF1UlNTeDl0djNaVWRndEp5VVlYN29VZS9GKwpoUHVwVU4rdWVTUndGQjBiVTYwRXZQWTdVU2RIR1diVVIrRDRzTVQ4Wjk0UVl2S2ZCanU3ZXVKWSs0Mmd2Wm9jCitEWU9ZS05qNXFER2V5azErOE9aTXZNQ0F3RUFBUT09Ci0tLS0tRU5EIFBVQkxJQyBLRVktLS0tLQo=

- name: Big Organization
domain: big-organization.example
address1: Offshore Accounting Drive 19
address2:
zipcode: 54331
country: Nowhereland
users:
- username: admin@big-organization.example
firstname: admin
lastname: robot
password: password

public_key:␣
→˓LS0tLS1CRUdJTiBQVUJMSUMgS0VZLS0tLS0KTUlJQ0lqQU5CZ2txaGtpRzl3MEJBUUVGQUFPQ0FnOEFNSUlDQ2dLQ0FnRUF2eU4wWVZhWWVZcHVWRVlpaDJjeQphTjdxQndCUnB5bVVibnRQNmw2Vk9OOGE1eGwxMmJPTlQyQ1hwSEVGUFhZQTFFZThQRFZwYnNQcVVKbUlseWpRCkgyN0NhZTlIL2lJbUNVNnViUXlnTzFsbG1KRTJQWDlTNXVxendVV3BXMmRxRGZFSHJLZTErUUlDRGtGSldmSEIKWkJkczRXMTBsMWlxK252dkZ4OWY3dk8xRWlLcVcvTGhQUS83Mm52YlZLMG9nRFNaUy9Jc1NnUlk5ZnJVU1FZUApFbGVZWUgwYmI5VUdlNUlYSHRMQjBkdVBjZUV4dXkzRFF5bXh2WTg3bTlkelJsN1NqaFBqWEszdUplSDAwSndjCk80TzJ0WDVod0lLL1hEQ3h4eCt4b3cxSDdqUWdXQ0FybHpodmdzUkdYUC9wQzEvL1hXaVZSbTJWZ3ZqaXNNaisKS2VTNWNaWWpkUkMvWkRNRW1QU29rS2Y4UnBZUk1lZk0xMWtETTVmaWZIQTlPcmY2UXEyTS9SMy90Mk92VDRlRgorUzVJeTd1QWk1N0ROUkFhejVWRHNZbFFxTU5QcUpKYlRtcGlYRWFpUHVLQitZVEdDSC90TXlrRG1JK1dpejNRCjh6SVo1bk1IUnhySFNqSWdWSFdwYnZlTnVaL1Q1aE95aE1uZHU0c3NpRkJyUXN5ZGc1RlVxR3lkdE1JMFJEVHcKSDVBc1ovaFlLeHdiUm1xTXhNcjFMaDFBaDB5SUlsZDZKREY5MkF1UlNTeDl0djNaVWRndEp5VVlYN29VZS9GKwpoUHVwVU4rdWVTUndGQjBiVTYwRXZQWTdVU2RIR1diVVIrRDRzTVQ4Wjk0UVl2S2ZCanU3ZXVKWSs0Mmd2Wm9jCitEWU9ZS05qNXFER2V5azErOE9aTXZNQ0F3RUFBUT09Ci0tLS0tRU5EIFBVQkxJQyBLRVktLS0tLQo=

collaborations:

- name: ZEPPELIN
participants:
- name: IKNL
api_key: 123e4567-e89b-12d3-a456-426614174001

- name: Small Organization
api_key: 123e4567-e89b-12d3-a456-426614174002

(continues on next page)

46 Chapter 4. Index



vantage6

(continued from previous page)

- name: Big Organization
api_key: 123e4567-e89b-12d3-a456-426614174003

tasks: ["hello-world"]
encrypted: false

- name: PIPELINE
participants:
- name: IKNL
api_key: 123e4567-e89b-12d3-a456-426614174004

- name: Big Organization
api_key: 123e4567-e89b-12d3-a456-426614174005

tasks: ["hello-world"]
encrypted: false

- name: SLIPPERS
participants:
- name: Small Organization
api_key: 123e4567-e89b-12d3-a456-426614174006

- name: Big Organization
api_key: 123e4567-e89b-12d3-a456-426614174007

tasks: ["hello-world", "hello-world"]
encrypted: false

Warning: All users that are imported using v6 server import receive the superuser role. We are looking into
ways to also be able to import roles. For more background info refer to this issue.

4.5.6.5 Testing

You can test the infrastructure via the v6 dev and v6 test commands. The purpose of v6 dev is to easily setup
and run a test server accompanied by N nodes locally. For example, if you have N = 10 datasets to test a particular
algorithm on, then you can spawn a server and 10 nodes with a single command.

The v6 test command is used to run the v6-diagnostics algorithm. You can run it on an existing network or create a
v6 dev network and run the test on that in one go.

You can view all available commands in the table below, or alternatively, use v6 dev --help. By using --help
with the individual commands (e.g. v6 dev start-demo-network --help), you can view more details on how to
execute them.

Command Description
v6 dev create-demo-network Create a new network with server and nodes
v6 dev start-demo-network Start the network
v6 dev stop-demo-network Stop the network
v6 dev remove-demo-network Remove the network completely
v6 test feature-test Run the feature-tester algorithm on an existing network
v6 test integration-test Create a dev network and run feature-tester on that network

An overview of the tests that the v6-diagnostics algorithm runs is given below.

• Environment variables: Reports the environment variables that are set in the algorithm container by the node
instance. For example the location of the input, token and output files.

4.5. Server admin guide 47

https://github.com/vantage6/vantage6/issues/71
https://github.com/vantage6/v6-diagnostics
https://github.com/vantage6/v6-diagnostics


vantage6

• Input file: Reports the contents of the input file. You can verify that the input set by the client is actually received
by the algorithm.

• Output file: Writes ‘test’ to the output file and reads it back.

• Token file: Prints the contents of the token file. It should contain a JWT that you can decode and verify the
payload. The payload contains information like the organization and collaboration ids.

• Temporary directory: Creates a file in the temporary directory. The temporary directory is a directory that is
shared between all containers that share the same run id. This checks that the temporary directory is writable.

• Local proxy: Sends a request to the local proxy. The local proxy is used to reach the central server from the
algorithm container. This is needed as parent containers need to be able to create child containers (=subtasks).
The local proxy also handles encryption/decryption of the input and results as the algorithm container is not
allowed to know the private key.

• Subtask creation: Creates a subtask (using the local proxy) and waits for the result.

• Isolation test: Checks if the algorithm container is isolated such that it can not reach the internet. It tests this by
trying to reach google.nl, so make sure this is not a whitelisted domain when testing.

• External port test: Check that the algorithm can find its own ports. Algorithms can request a dedicated port for
communication with other algorithm containers. The port that they require is stored in the Dockerfile using the
EXPORT and LABEL keywords. For example:

LABEL p8888="port8"
EXPOSE 8888

It however does not check that the application is actually listening on the port.

• Database readable: Check if the file-based database is readable.

• VPN connection: Check if an algorithm container on the node can reach other algorithm containers on other
nodes and on the same node over the VPN network. This test will not succeed if the VPN connection is not set
up - it can also be disabled with v6 test feature-test --no-vpn.

4.5.7 Configure

The vantage6-server requires a configuration file to run. This is a yaml file with a specific format.

The next sections describes how to configure the server. It first provides a few quick answers on setting up your server,
then explains where your vantage6 configuration files are stored, and finally shows an example of all configuration file
options.

4.5.7.1 How to create a configuration file

The easiest way to create an initial configuration file is via: v6 server new. This allows you to configure the basic
settings. For more advanced configuration options, which are listed below, you can view the example configuration
file.

48 Chapter 4. Index



vantage6

4.5.7.2 Where is my configuration file?

To see where your configuration file is located, you can use the following command

v6 server files

Warning: This command will only work for if the server has been deployed using the v6 commands.

Also, note that on local deployments you may need to specify the --user flag if you put your configuration file in
the user folder.

You can also create and edit this file manually.

4.5.7.3 All configuration options

The following configuration file is an example that intends to list all possible configuration options.

You can download this file here: server_config.yaml

# Human readable description of the server instance. This is to help
# your peers to identify the server
description: Test

# Human readable name of the server instance. This can help users identify
# the server quickly. It's used for example in the TOTP issuer for 2FA.
server_name: demo

# IP adress to which the server binds. In case you specify 0.0.0.0
# the server listens on all interfaces
ip: 0.0.0.0

# Port to which the server binds
port: 5000

# API path prefix. (i.e. https://yourdomain.org/api_path/<endpoint>). In the
# case you use a referse proxy and use a subpath, make sure to include it
# here also.
api_path: /api

# Let the server know where it is hosted. This is used as a setting to
# communicate back and forth with other vantage6 components such as the
# algorithm store.
# Example for the cotopaxi server
server_url: https://cotopaxi.vantage6.ai
# Example for running the server locally with default settings:
# server_url: http://localhost:5000

# The URI to the server database. This should be a valid SQLAlchemy URI,
# e.g. for an Sqlite database: sqlite:///database-name.sqlite,
# or Postgres: postgresql://username:password@172.17.0.1/database).
uri: sqlite:///test.sqlite

(continues on next page)

4.5. Server admin guide 49



vantage6

(continued from previous page)

# This should be set to false in production as this allows to completely
# wipe the database in a single command. Useful to set to true when
# testing/developing.
allow_drop_all: True

# Enable or disable two-factor authentication. If enabled, users will be
# presented with a QR-code to scan with their phone the first time they log in.
two_factor_auth: true

# The secret key used to generate JWT authorization tokens. This should
# be kept secret as others are able to generate access tokens if they
# know this secret. This parameter is optional. In case it is not
# provided in the configuration it is generated each time the server
# starts. Thereby invalidating all previous distributed keys.
# OPTIONAL
jwt_secret_key: super-secret-key! # recommended but optional

# Settings for the logger
logging:
# Controls the logging output level. Could be one of the following
# levels: CRITICAL, ERROR, WARNING, INFO, DEBUG, NOTSET
level: DEBUG

# Filename of the log-file, used by RotatingFileHandler
file: test.log

# Whether the output is shown in the console or not
use_console: True

# The number of log files that are kept, used by RotatingFileHandler
backup_count: 5

# Size in kB of a single log file, used by RotatingFileHandler
max_size: 1024

# format: input for logging.Formatter,
format: "%(asctime)s - %(name)-14s - %(levelname)-8s - %(message)s"
datefmt: "%Y-%m-%d %H:%M:%S"

# (optional) set the individual log levels per logger name, for example
# mute some loggers that are too verbose.
loggers:
- name: urllib3
level: warning

- name: socketIO-client
level: warning

- name: engineio.server
level: warning

- name: socketio.server
level: warning

- name: sqlalchemy.engine
level: warning

(continues on next page)

50 Chapter 4. Index



vantage6

(continued from previous page)

- name: requests_oauthlib.oauth2_session
level: warning

# Additional debug flags
debug:
# Set to `true` to enable debug mode for the socketio server
socketio: false

# Set to `true` to enable debug mode in the Flask app
flask: false

# Configure a smtp mail server for the server to use for administrative
# purposes. e.g. allowing users to reset their password.
# OPTIONAL
smtp:
port: 587
server: smtp.yourmailserver.example.com
# credentials for authenticating with the SMTP server
username: your-username
password: super-secret-password
# email address to send emails from (header)
# (defaults to noreply@vantage6.ai)
email_from: noreply@example.com

# Set an email address you want to direct your users to for support
# (defaults to support@vantage6.ai)
support_email: your-support@example.com

# set how long reset token provided via email are valid (default 1 hour)
email_token_validity_minutes: 60

# set how long tokens and refresh tokens are valid (default 6 and 48
# hours, respectively)
token_expires_hours: 6
refresh_token_expires_hours: 48

# If you have a server with a high workload, it is recommended to use
# multiple server instances (horizontal scaling). If you do so, you also
# need to set up a RabbitMQ message service to ensure that the communication
# between the server and the nodes is handled properly. Then, fill out the
# RabbitMQ connection URI below to connect the server to it. Also, set the
# start_with_server flag to true to start RabbitMQ when you start the server.
rabbitmq:
uri: amqp://myuser:mypassword@myhostname:5672/myvhost
start_with_server: false

# If algorithm containers need direct communication between each other
# the server also requires a VPN server. (!) This must be a EduVPN
# instance as vantage6 makes use of their API (!)
# OPTIONAL
vpn_server:
# the URL of your VPN server

(continues on next page)

4.5. Server admin guide 51



vantage6

(continued from previous page)

url: https://your-vpn-server.ext

# OATH2 settings, make sure these are the same as in the
# configuration file of your EduVPN instance
redirect_url: http://localhost
client_id: your_VPN_client_user_name
client_secret: your_VPN_client_user_password

# Username and password to acccess the EduVPN portal
portal_username: your_eduvpn_portal_user_name
portal_userpass: your_eduvpn_portal_user_password

# specify custom Docker images to use for starting the different
# components.
# OPTIONAL
images:
server: harbor2.vantage6.ai/infrastructure/server:cotopaxi
ui: harbor2.vantage6.ai/infrastructure/ui:cotopaxi

# options for starting the User Interface when starting the server
ui:
# set this to true to start the UI when starting the server with
# `v6 server start`
enabled: true

# port at which the UI will be available on your local machine
port: 3456

# set password policies for the server
password_policy:
# maximum number of failed login attempts before the user is locked out for
# a certain amount of time. Default is 5.
max_failed_attempts: 5

# number of minutes the user is locked out after the maximum number of failed
# login attempts is reached. Default is 15.
inactivation_minutes: 15

# number of minutes to wait between emails sent to the user for each of the following␣
→˓events:
# - their account has been blocked (max login attempts exceeded)
# - a password reset request via email
# - a 2FA reset request via email
# (these events have an independent timer). Default is 60.
between_user_emails_minutes: 60

# set up with which origins the server should allow CORS requests. The default
# is to allow all origins. If you want to restrict this, you can specify a list
# of origins here. Below are examples to allow requests from the Cotopaxi UI, and
# port 3456 on localhost
cors_allowed_origins:
- https://portal.cotopaxi.vantage6.ai

(continues on next page)

52 Chapter 4. Index



vantage6

(continued from previous page)

- http://localhost:3456

# set up which algorithm stores are available for all collaborations in the server.
# In the example below, the vantage6 community algorithm store is made available to
# this server. Note that the 'server_url' *has* to be set in the configuration file
# for this to work (it is required to communicate with the algorithm store what the
# server's address is).
algorithm_stores:
# Each store should have a name and a URL.
- name: Community store
url: https://store.cotopaxi.vantage6.ai

# development mode settings. Only use when running both the server and the algorithm
# store that it communicates with locally
dev:
# Specify the URI to the host. This is used to generate the correct URIs to
# communicate with the algorithm store. On Windows and Mac, you can use the special
# hostname `host.docker.internal` to refer to the host machine. On Linux, you
# should normally use http://172.17.0.1.
host_uri: http://host.docker.internal

4.5.7.4 Configuration file location

The directory where to store the configuration file depends on your operating system (OS). It is possible to store the
configuration file at system or at user level. At the user level, configuration files are only available for your user. By
default, server configuration files are stored at system level.

The default directories per OS are as follows:

OS System User
Win-
dows

C:\ProgramData\vantage\server C:\Users\<user>\AppData\Local\vantage\
server

Ma-
cOS

/Library/Application/Support/
vantage6/server

/Users/<user>/Library/Application Support/
vantage6/server

Linux /etc/xdg/vantage6/server/ /home/<user>/.config/vantage6/server/

Warning: The command v6 server looks in certain directories by default. It is possible to use any directory and
specify the location with the --config flag. However, note that using a different directory requires you to specify
the --config flag every time!

Similarly, you can put your server configuration file in the user folder by using the --user flag. Note that in that
case, you have to specify the --user flag for all v6 server commands.

4.5. Server admin guide 53



vantage6

4.5.7.5 Logging

Logging is enabled by default. To configure the logger, look at the logging section in the example configuration in
All configuration options.

Useful commands:

1. v6 server files: shows you where the log file is stored

2. v6 server attach: show live logs of a running server in your current console. This can also be achieved when
starting the server with v6 server start --attach

4.5.8 Permission management

Almost everything in the vantage6 server is under role-based access control: not everyone is allowed to access every-
thing.

4.5.8.1 Authentication types

There are three types of entities that can attempt to use the vantage6 server: users, nodes and algorithm containers. Not
every resource is available to all three entities. In the vantage6 server code, this is ensured by using so-called decorators
that are placed on the API endpoints. These decorators check if the entity that is trying to access the endpoint is allowed
to do so. For example, you may see the following decorators on an endpoint:

• @only_for(('user', 'container')): only accessible to users and algorithm containers

• @with_user: only accessible to users

These decorators ensure that only authenticated entities of the right type can enter the endpoint. For example, only
users can create new users or organizations, and only nodes are allowed to update the results of a task (the algorithm
itself cannot do this as it exits when it finishes, and users are not allowed to meddle with results).

4.5.8.2 Permission rules

The fact that users are allowed to create new organizations, does not mean that all users are allowed to do so. There are
permission rules that determine what every user is allowed to do. These rules are assigned to a user by another user. A
user that creates a new user is never allowed to give the new user more permissions than they have themselves.

Nodes and algorithm containers all have the same permissions, but for specific situations there are specific checks. For
instance, nodes are only allowed to update their own results, and not those of other nodes.

The following rules are defined:

The rules have an operation, a scope, and a resource that they work on. For instance, a rule with operation ‘View’,
scope ‘Organization’ and resource ‘Task’, will allow a user to view all tasks of their own organization.

There are six operations (view, edit, create, delete, send and receive). The first four correspond to GET, PATCH,
CREATE and DELETE requests, respectively. The last two allow users to send and receive data via socket events. For
example, sending events would allow them to kill tasks that are running on a node.

The scopes are:

• Global: all resources of all organizations

• Organization: resources of the user’s own organization

• Collaboration: resources of all organizations that the user’s organization is in a collaboration with

54 Chapter 4. Index



vantage6

Fig. 4.5: The rules that are available per resource, scope, and operation. For example, the first rule with resource ‘User’,
scope ‘Own’ and operation ‘View’ will allow a user to view their own user details.

4.5. Server admin guide 55



vantage6

• Own: these are specific to the user endpoint. Permits a user to see/edit their own user, but not others within the
organization.

A user may be assigned anywhere between zero and all of the rules.

Note: When you create a new server, the first time it is started, a new user ‘root’ is created that has all permissions.
This user is meant to be used to create the first users and organizations.

4.5.8.3 Roles

To make it easier to assign permissions to users, there are roles. A role is simply a set of rules. When a user is assigned
a role, they are assigned all the rules that are part of that role.

The permission structure of vantage6 allows for a lot of flexibility. However, especially for beginning users, it can be a
bit daunting to set up all the permissions. Therefore, there are some default roles that can be used to quickly set up a
server. These roles are, in descending order of permissions:

• Root: all permissions

• Collaboration Admin: can do almost everything for all organizations in collaborations that they are a member
of, e.g. create new users but not delete the entire collaboration

• Organization Admin: can do everything for their own organization

• Researcher: can view the organization’s resources and create tasks

• Viewer: can only view the organization’s resources

We do recommend that you review the permissions of these roles before using them in your own project.

4.5.9 Shell

Warning: Using the server shell is not recommended. The shell is outdated and superseded by other tools. The
shell offers a server admin the ability to manage the server entities, but does not offer any validation of the input.
Therefore, it is easy to break the server by using the shell.

Instead, we recommend using the user interface, the Python client or the API .

The commands in this page have not been updated to match version 4.0.

The shell allows a server admin to manage all server entities. To start the shell, use v6 server shell [options].

In the next sections the different database models that are available are explained. You can retrieve any record and edit
any property of it. Every db. object has a help() method which prints some info on what data is stored in it (e.g.
db.Organization.help()).

Note: Don’t forget to call .save() once you are done editing an object.

56 Chapter 4. Index



vantage6

4.5.9.1 Organizations

Note: Organizations have a public key that is used for end-to-end encryption. This key is automatically created and/or
uploaded by the node the first time it runs.

To store an organization you can use the db.Organization model:

# create new organiztion
organization = db.Organization(

name="IKNL",
domain="iknl.nl",
address1="Zernikestraat 29",
address2="Eindhoven",
zipcode="5612HZ",
country="Netherlands"

)

# store organization in the database
organization.save()

Retrieving organizations from the database:

# get all organizations in the database
organizations = db.Organization.get()

# get organization by its unique id
organization = db.Organization.get(1)

# get organization by its name
organization = db.Organization.get_by_name("IKNL")

A lot of entities (e.g. users) at the server are connected to an organization. E.g. you can see which (computation) tasks
are issued by the organization or see which collaborations it is participating in.

# retrieve organization from which we want to know more
organization = db.Organization.get_by_name("IKNL")

# get all collaborations in which the organization participates
collaborations = organization.collaborations

# get all users from the organization
users = organization.users

# get all created tasks (from all users)
tasks = organization.created_tasks

# get the runs of all these tasks
runs = organization.runs

# get all nodes of this organization (for each collaboration
# an organization participates in, it needs a node)
nodes = organization.nodes

4.5. Server admin guide 57



vantage6

4.5.9.2 Roles and Rules

A user can have multiple roles and rules assigned to them. These are used to determine if the user has permission to
view, edit, create or delete certain resources using the API. A role is a collection of rules.

# display all available rules
db.Rule.get()

# display rule 1
db.Rule.get(1)

# display all available roles
db.Role.get()

# display role 3
db.Role.get(3)

# show all rules that belong to role 3
db.Role.get(3).rules

# retrieve a certain rule from the DB
rule = db.Rule.get_by_("node", Scope, Operation)

# create a new role
role = db.Role(name="role-name", rules=[rule])
role.save()

# or assign the rule directly to the user
user = db.User.get_by_username("some-existing-username")
user.rules.append(rule)
user.save()

4.5.9.3 Users

Users belong to an organization. So if you have not created any Organizations yet, then you should do that first. To
create a user you can use the db.User model:

# first obtain the organization to which the new user belongs
org = db.Organization.get_by_name("IKNL")

# obtain role 3 to assign to the new user
role_3 = db.Role.get(3)

# create the new users, see section Roles and Rules on how to
# deal with permissions
new_user = db.User(

username="root",
password="super-secret",
firstname="John",
lastname="Doe",
roles=[role_3],
rules=[],

(continues on next page)

58 Chapter 4. Index



vantage6

(continued from previous page)

organization=org
)

# store the user in the database
new_user.save()

You can retrieve users in the following ways:

# get all users
db.User.get()

# get user 1
db.User.get(1)

# get user by username
db.User.get_by_username("root")

# get all users from the organization IKNL
db.Organization.get_by_name("IKNL").users

To modify a user, simply adjust the properties and save the object.

user = db.User.get_by_username("some-existing-username")

# update the firstname
user.firstname = "Brandnew"

# update the password; it is automatically hashed.
user.password = "something-new"

# store the updated user in the database
user.save()

4.5.9.4 Collaborations

A collaboration consists of one or more organizations. To create a collaboration you need at least one but preferably
multiple Organizations in your database. To create a collaboration you can use the db.Collaboration model:

# create a second organization to collaborate with
other_organization = db.Organization(

name="IKNL",
domain="iknl.nl",
address1="Zernikestraat 29",
address2="Eindhoven",
zipcode="5612HZ",
country="Netherlands"

)
other_organization.save()

# get organization we have created earlier
iknl = db.Organization.get_by_name("IKNL")

(continues on next page)

4.5. Server admin guide 59



vantage6

(continued from previous page)

# create the collaboration
collaboration = db.Collaboration(

name="collaboration-name",
encrypted=False,
organizations=[iknl, other_organization]

)

# store the collaboration in the database
collaboration.save()

Tasks, nodes and organizations are directly related to collaborations. We can obtain these by:

# obtain a collaboration which we like to inspect
collaboration = db.Collaboration.get(1)

# get all nodes
collaboration.nodes

# get all tasks issued for this collaboration
collaboration.tasks

# get all organizations
collaboration.organizations

Warning: Setting the encryption to False at the server does not mean that the nodes will send encrypted results.
This is only the case if the nodes also agree on this setting. If they don’t, you will receive an error message.

4.5.9.5 Nodes

Before nodes can login, they need to exist in the server’s database. A new node can be created as follows:

# we'll use a uuid as the API-key, but you can use anything as
# API key
from uuid import uuid4

# nodes always belong to an organization *and* a collaboration,
# this combination needs to be unique!
iknl = db.Organization.get_by_name("IKNL")
collab = iknl.collaborations[0]

# generate and save
api_key = str(uuid4())
print(api_key)

node = db.Node(
name = f"IKNL Node - Collaboration {collab.name}",
organization = iknl,
collaboration = collab,
api_key = api_key

(continues on next page)

60 Chapter 4. Index



vantage6

(continued from previous page)

)

# save the new node to the database
node.save()

Note: API keys are hashed before stored in the database. Therefore you need to save the API key immediately. If you
lose it, you can reset the API key later via the shell, API, client or UI.

4.5.9.6 Tasks and Results

Warning: Tasks(/results) created from the shell are not picked up by nodes that are already running. The signal to
notify them of a new task cannot be emitted this way. We therefore recommend sending tasks via the Python client.

A task is intended for one or more organizations. For each organization the task is intended for, a corresponding
(initially empty) run should be created. Each task can have multiple runs, for example a run from each organization.

# obtain organization from which this task is posted
iknl = db.Organization.get_by_name("IKNL")

# obtain collaboration for which we want to create a task
collaboration = db.Collaboration.get(1)

# obtain the next job_id. Tasks sharing the same job_id
# can share the temporary volumes at the nodes. Usually this
# job_id is assigned through the API (as the user is not allowed
# to do so). All tasks from a master-container share the
# same job_id
job_id = db.Task.next_job_id()

task = db.Task(
name="some-name",
description="some human readable description",
image="docker-registry.org/image-name",
collaboration=collaboration,
job_id=job_id,
database="default",
init_org=iknl,

)
task.save()

# input the algorithm container (docker-registry.org/image-name)
# expects
input_ = {
}

import datetime

# now create a Run model for each organization within the
(continues on next page)

4.5. Server admin guide 61



vantage6

(continued from previous page)

# collaboration. This could also be a subset
for org in collaboration.organizations:

res = db.Run(
input=input_,
organization=org,
task=task,
assigned_at=datetime.datetime.now()

)
res.save()

Tasks can have a child/parent relationship. Note that the job_id is for parent and child tasks the same.

# get a task to which we want to create some
# child tasks
parent_task = db.Task.get(1)

child_task = db.Task(
name="some-name",
description="some human readable description",
image="docker-registry.org/image-name",
collaboration=collaboration,
job_id=parent_task.job_id,
database="default",
init_org=iknl,
parent=parent_task

)
child_task.save()

Note: Tasks that share a job_id have access to the same temporary folder at the node. This allows for multi-stage
algorithms.

Obtaining algorithm Runs:

# obtain all Runs
db.Run.get()

# obtain only completed runs
[run for run in db.Run.get() if run.complete]

# obtain run by its unique id
db.Run.get(1)

62 Chapter 4. Index



vantage6

4.6 Algorithm store admin guide

This section shows you how you can set up your own vantage6 algorithm store. First, we discuss the requirements for
hosting this server, then guide you through the installation process. Finally, we explain how to configure and start your
algorithm store.

4.6.1 Introduction

4.6.1.1 What is an algorithm store?

When using vantage6, it is important to know which algorithms are available to you. This is why vantage6 has algorithm
stores. An algorithm store contains metadata about the algorithms so that you can easily find the algorithm you need,
and know how to use it.

There is a community algorithm store, which is by default available to all collaborations. This store is maintained by
the vantage6 community. You can also create your own algorithm store. This allows you to create a private algorithm
store, which is only available to your own collaborations. .. # TODO add link to creating algorithm store .. TODO add
links to an architectural page where algorithm store is explained

4.6.1.2 Linking algorithm stores

Algorithm stores can be linked to a vantage6 server or to a specific collaboration on a server. If an algorithm store is
linked to a server, the algorithms in the store are available to all collaborations on that server. If an algorithm store is
linked to a collaboration, the algorithms in the store are only available to that collaboration.

Users can link algorithm stores to a collaboration if they have permission to modify that collaboration. Algorithm
stores can only be linked to a server by users that have permission to modify all collaborations on the server.

4.6.2 Requirements

Note: This section is almost the same as the node and server sections - their requirements are very similar.

Below are the minimal requirements for vantage6 infrastructure components. Note that these are recommendations: it
may also work on other hardware, operating systems, versions of Python etc. (but they are not tested as much).

Hardware

• x86 CPU architecture + virtualization enabled

• 1 GB memory

• 50GB+ storage

• Stable and fast (1 Mbps+ internet connection)

Note that the algorithm store’s IP address should also be reachable by users and the central server. This will usually
be a public IP address.

Software

• Operating system: Ubuntu 18.04+

• Python

• Docker

4.6. Algorithm store admin guide 63



vantage6

Note: For the server, Ubuntu is highly recommended. It is possible to run a development server (using v6 server start)
on Windows or MacOS, but for production purposes we recommend using Ubuntu.

Warning: The hardware requirements of the node also depend on the algorithms that the node will run. For
example, you need much less compute power for a descriptive statistical algorithm than for a machine learning
model.

4.6.2.1 Python

Installation of any of the vantage6 packages requires Python 3.10. For installation instructions, see python.org, ana-
conda.com or use the package manager native to your OS and/or distribution.

Note: We recommend you install vantage6 in a new, clean Python (Conda) environment.

Higher versions of Python (3.11+) will most likely also work, as might lower versions (3.8 or 3.9). However, we develop
and test vantage6 on version 3.10, so that is the safest choice.

Warning: Note that Python 3.10 is only used in vantage6 versions 3.8.0 and higher. In lower versions, Python 3.7
is required.

4.6.2.2 Docker

Docker facilitates encapsulation of applications and their dependencies in packages that can be easily distributed to di-
verse systems. Algorithms are stored in Docker images which nodes can download and execute. Besides the algorithms,
both the node and server are also running from a docker container themselves.

Please refer to this page on how to install Docker. To verify that Docker is installed and running you can run the
hello-world example from Docker.

docker run hello-world

Warning: Note that for Linux, some post-installation steps may be required. Vantage6 needs to be able to run
docker without sudo, and these steps ensure just that.

For Windows, if you are using Docker Desktop, it may be preferable to limit the amount of memory Docker can
use - in some cases it may otherwise consume much memory and slow down the system. This may be achieved as
described here.

Note:

• Always make sure that Docker is running while using vantage6!

• We recommend to always use the latest version of Docker.

64 Chapter 4. Index

https://python.org
https://anaconda.com
https://anaconda.com
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://stackoverflow.com/questions/62405765/memory-allocation-to-docker-containers-after-moving-to-wsl-2-in-windows


vantage6

4.6.3 Install

4.6.3.1 Local (test) Installation

To install the vantage6 algorithm store, make sure you have met the requirements. Then, we provide a command-line
interface (CLI) with which you can manage your algorithm store. The CLI is a Python package that can be installed
using pip. We always recommend to install the CLI in a virtual environment or a conda environment.

Run this command to install the CLI in your environment:

pip install vantage6

Or if you want to install a specific version:

pip install vantage6==x.y.z

You can verify that the CLI has been installed by running the command v6 --help. If that prints a list of commands,
the installation is completed.

The algorithm store software itself will be downloaded when you start the algorithm store for the first time.

4.6.3.2 Hosting your algorithm store

To host your algorithm store, we recommend to use the Docker image we provide: harbor2.vantage6.ai/
infrastructure/algorithm-store. Running this docker image will start the server. Check the deployment section
for deployment examples.

Note: We recommend to use the latest version. Should you have reasons to deploy an older VERSION, use the image
harbor2.vantage6.ai/infrastructure/algorithm-store:<VERSION>.

4.6.4 Deploy

The deployment of the algorithm store is highly similar to the deployment of the vantage6 server. Both are Flask
applications that are structured very similarly.

The algorithm store’s deployment is a bit simpler because it does not use socketIO. This means that you don’t have to
take into account that the websocket channels should be open, and makes it easier to horizontally scale the application.

4.6.4.1 NGINX

The algorithm store can be deployed with a similar nginx script as detailed for the server.

One note is that for the algorithm store, the subpath is fixed at /api, so be sure to set that in the subpath block.

4.6. Algorithm store admin guide 65

https://docs.python.org/3/tutorial/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html


vantage6

4.6.4.2 Docker compose

The algorithm store can be started with v6 algorithm-store start, but in most deployment scenarios a docker-
compose file is used. Below is an example of a docker-compose file that can be used to deploy the algorithm store.

services:
vantage6-algorithm-store:
image: harbor2.vantage6.ai/infrastructure/algorithm-store:cotopaxi
ports:
- "8000:5000"
volumes:
- /path/to/my/server.yaml:/mnt/config.yaml
command: ["/bin/bash", "-c", "/vantage6/vantage6-algorithm-store/server.sh"]

4.6.5 Use

This section explains which commands are available to manage your algorithm store. These can be used to set up a test
server locally. To deploy a server, see the deployment section.

4.6.5.1 Quick start

To create a new algorithm store, run the command below. A menu will be started that allows you to set up an algorithm
store configuration file.

v6 algorithm-store new

For more details, check out the Configure section.

To run an algorithm store, execute the command below. The --attach flag will copy log output to the console.

v6 algorithm-store start --name <your_store> --attach

Finally, a server can be stopped again with:

v6 algorithm-store stop --name <your_store>

4.6.5.2 Available commands

The following commands are available in your environment. To see all the options that are available per command use
the --help flag, e.g. v6 server start --help.

Table 4.1: Available commands
Command Description
v6 algorithm-store new Create a new algorithm store configuration file
v6 algorithm-store start Start an algorithm store
v6 algorithm-store stop Stop an algorithm store
v6 algorithm-store files List the files that an algorithm store is using
v6 algorithm-store
attach

Show an algorithm store’s logs in the current terminal

v6 algorithm-store list List the available algorithm store instances

66 Chapter 4. Index



vantage6

4.6.6 Configure

The algorithm store requires a configuration file to run. This is a yaml file with a specific format.

The next sections describes how to configure the algorithm store. It first provides a few quick answers on setting up
your store, then shows an example of all configuration file options, and finally explains where your configuration files
are stored.

4.6.6.1 How to create a configuration file

The easiest way to create an initial configuration file is via: v6 algorithm-store new. This allows you to config-
ure the basic settings. For more advanced configuration options, which are listed below, you can view the example
configuration file.

4.6.6.2 Where is my configuration file?

To see where your configuration file is located, you can use the following command

v6 algorithm-store files

Warning: This command will only work for if the algorithm store has been deployed using the v6 commands.

Also, note that on local deployments you may need to specify the --user flag if you put your configuration file in
the user folder.

You can also create and edit this file manually.

4.6.6.3 All configuration options

The following configuration file is an example that intends to list all possible configuration options.

You can download this file here: algorithm_store_config.yaml

# Human readable description of the algorithm store instance. This is to help
# your peers to identify the store
description: Test

# IP adress to which the algorithm store server binds. In case you specify 0.0.0.0
# the server listens on all interfaces
ip: 0.0.0.0

# Port to which the algorithm store binds
port: 5000

# The URI to the algorithm store database. This should be a valid SQLAlchemy URI,
# e.g. for an Sqlite database: sqlite:///database-name.sqlite,
# or Postgres: postgresql://username:password@172.17.0.1/database).
uri: sqlite:///test.sqlite

# This should be set to false in production as this allows to completely
# wipe the database in a single command. Useful to set to true when

(continues on next page)

4.6. Algorithm store admin guide 67



vantage6

(continued from previous page)

# testing/developing.
allow_drop_all: True

# Settings for the logger
logging:
# Controls the logging output level. Could be one of the following
# levels: CRITICAL, ERROR, WARNING, INFO, DEBUG, NOTSET
level: DEBUG

# Filename of the log-file, used by RotatingFileHandler
file: test.log

# Whether the output is shown in the console or not
use_console: True

# The number of log files that are kept, used by RotatingFileHandler
backup_count: 5

# Size in kB of a single log file, used by RotatingFileHandler
max_size: 1024

# format: input for logging.Formatter,
format: "%(asctime)s - %(name)-14s - %(levelname)-8s - %(message)s"
datefmt: "%Y-%m-%d %H:%M:%S"

# (optional) set the individual log levels per logger name, for example
# mute some loggers that are too verbose.
loggers:
- name: urllib3
level: warning

- name: sqlalchemy.engine
level: warning

# Additional debug flags
debug:
# Set to `true` to enable debug mode in the Flask app
flask: false

# Settings for the algorithm store's policies
policies:
# Set to `true` to allow anyone to view and run the algorithms in the store.
algorithms_open: true
# Set to `true` to allow any user from whitelisted vantage6 servers to view and run
# the algorithms in the store. Superfluous if `algorithms_open` is set to `true`.
# If this is set to `false`, only users with specific roles in the algorithm store
# can view the algorithms in the store.
algorithms_open_to_whitelisted: true

# development mode settings. Only use when running both the algorithm store and
# the server that it communicates with locally
dev:
# Specify the URI to the host. This is used to generate the correct URIs to

(continues on next page)

68 Chapter 4. Index



vantage6

(continued from previous page)

# communicate with the server. On Windows and Mac, you can use the special
# hostname `host.docker.internal` to refer to the host machine. On Linux, you
# should normally use http://172.17.0.1.
host_uri: http://host.docker.internal

# Provide an initial root user for the algorithm store. This user will be created
# when the store is started for the first time. The root user has full access to
# the store and can create other users. The root user should be a reference to an
# existing user in a vantage6 server.
root_user:
# URI to the vantage6 server
v6_server_uri: http://localhost:5000/api
# username of the vantage6 server's user you want to make root in the algorithm store
username: root

4.6.6.4 Configuration file location

The directory where to store the configuration file depends on your operating system (OS). It is possible to store the
configuration file at system or at user level. At the user level, configuration files are only available for your user. By
default, algorithm store configuration files are stored at system level.

The default directories per OS are as follows:

OS System User
Win-
dows

C:\ProgramData\vantage\
algorithm-store

C:\Users\<user>\AppData\Local\vantage\
algorithm-store

Ma-
cOS

/Library/Application/Support/
vantage6/algorithm-store

/Users/<user>/Library/Application Support/
vantage6/algorithm-store

Linux /etc/xdg/vantage6/algorithm-store/ /home/<user>/.config/vantage6/
algorithm-store/

Warning: The command v6 algorithm-store looks in certain directories by default. It is possible to use any
directory and specify the location with the --config flag. However, note that using a different directory requires
you to specify the --config flag every time!

Similarly, you can put your algorithm store configuration file in the user folder by using the --user flag. Note that
in that case, you have to specify the --user flag for all v6 algorithm-store commands.

4.6.6.5 Logging

Logging is enabled by default. To configure the logger, look at the logging section in the example configuration in
All configuration options.

Useful commands:

1. v6 algorithm-store files: shows you where the log file is stored

2. v6 algorithm-store attach: show live logs of a running store in your current console. This can also be
achieved when starting the store with v6 algorithm-store start --attach

4.6. Algorithm store admin guide 69



vantage6

4.7 Algorithm Development

This section helps you to develop MPC and FL algorithms that are compatible with vantage6. You are not going to
find a list of algorithms here or help on how to use them. In the Introduction, the basic concepts and interface between
node and algorithm are explained. Then, in the Algorithm development step-by-step guide, the algorithm development
process is explained. Finally, in the Classic Tutorial, an FL algorithm is build from scratch.

Warning: Note that the classic tutorial is not outdated, and the commands may be wrong. Nevertheless, the
concepts are still valid and the tutorial is still useful to get a grasp of the vantage6 framework.

4.7.1 Algorithm concepts

This page details the concepts used in vantage6 algorithms. Understanding these concepts is helpful when you to create
your own algorithms. A guide to develop your own algorithms can be found in the Algorithm development step-by-step
guide.

Algorithms are executed at the vantage6 node. The node receives a computation task from the vantage6-server. The
node will then retrieve the algorithm, execute it and return the results to the server.

Algorithms are shared using Docker images which are stored in a Docker image registry. The node downloads the
algorithms from the Docker registry. In the following sections we explain the fundamentals of algorithm containers.

1. Algorithm structure: The typical structure of an algorithm

2. Input & output: Interface between the node and algorithm container

3. Wrappers: Library to simplify and standardized the node-algorithm input and output

4. Child containers: Creating subtasks from an algorithm container

5. Networking: Communicate with other algorithm containers and the vantage6-server

6. Cross language: Cross language data serialization

4.7.1.1 Algorithm structure

Multi-party analyses commonly have a central part and a remote part. The remote part is responsible for the actual
analysis and the central part is often responsible for aggregating the partial results of the remote parts. An alternative to
aggregating is orchestration, where the central part does not combine the partial results itself, but instead orchestrates the
remote parts in a certain way that also leads to a global result. Of course, the central part may also do both aggregation
and orchestration.

In vantage6, we refer to the orchestration part as the central function and the federated part as the partial function.

A common pattern for a central function would be:

1. Request partial models from all participants

2. Obtain the partial models

3. Combine the partial models to a global model

4. (optional) Repeat step 1-3 until the model converges

In vantage6, it is possible to run only the partial parts of the analysis on the nodes and combine them on your own
machine, but it is usually preferable to run the central part within vantage6, because:

• You don’t have to keep your machine running during the analysis

70 Chapter 4. Index

https://docs.docker.com/get-started/#what-is-a-container-image
https://docs.vantage6.ai/installation/server/docker-registry


vantage6

• The results are stored on the server, so they may also be accessed by other users

Note: Central functions also run at a node and not at the server. For more information, see here.

4.7.1.2 Input & output

The algorithm runs in an isolated environment at the data station. It is important to limit the connectivity and access-
ability of an algorithm run for security reasons. For instance, by default, algorithms cannot access the internet.

In order for the algorithm to do its work, it needs to be provided with several environment variables and file mounts.
The exact environment variables that are available to algorithms are described in the Environment variables section.
The available file mounts are described below.

Note: This section describes the current process. Keep in mind that this is subjected to be changed. For more
information, please see this Github issue

File mounts

The algorithm container has access to several file mounts. These files mounts are provided by the vantage6 infrastruc-
ture, so the algorithm developer does not need to provide these files themselves. They can access these files using the
environment variables described in the Environment variables section.

The available file mounts are:

Input
The input file contains the user defined input. The user specifies this when a task is created.

Output
The algorithm writes its output to this file. When the docker container exits, the contents of this file will be send
back to the vantage6-server.

Token
The token file contains a JWT token which can be used by the algorithm to communicate with the central server.
The token can only be used to create a new task with the same image, and is only valid while the task has not yet
been completed.

Temporary directory
The temporary directory can be used by an algorithm container to share files with other algorithm containers
that:

• run on the same node

• have the same job_id

Algorithm containers share a job_id as long as they originate from the same user-created task. Child containers
(see Child containers) therefore have the same job_id as their parent container.

The paths to these files and directories are stored in the environment variables, which we will explain now.

4.7. Algorithm Development 71

https://vantage6.ai/news/algorithm-journey/
https://github.com/vantage6/vantage6/issues/154


vantage6

4.7.1.3 Wrappers

The vantage6 algorithm wrappers simplifies and standardizes the interaction between algorithm and node. The algo-
rithm wrapper does the following:

• read the data from the database(s) and provide it to the algorithm

• read the environment variables and file mounts and supply these to your algorithm.

• select the appropriate algorithm function to run. In more detail, this means that it provides an entrypoint for the
Docker container

• write the output of your algorithm to the output file

Using the wrappers allows algorithm developers to write a single algorithm for multiple types of data sources, because
the wrapper is responsible for reading the data from the database(s) and providing it to the algorithm. Note however
that algorithms cannot be run using databases that are not supported by the wrapper. The wrapper currently supports
the following database types listed here.

The wrapper is language specific and currently we support Python and R. Extending this to other languages is usually
simple.

Fig. 4.6: The algorithm wrapper handles algorithm input and output.

4.7.1.4 Child containers

When a user creates a task, one or more nodes spawn an algorithm container. These algorithm containers can create
new tasks themselves.

Every algorithm is supplied with a JWT token (see Input & output). This token can be used to communicate with the
vantage6-server. In case you use an algorithm wrapper, you can supply an AlgorithmClient using the appropriate
decorator.

A child container can be a parent container itself. There is no limit to the amount of task layers that can be created. It
is common to have only a single parent container which handles many child containers.

72 Chapter 4. Index

https://docs.docker.com/engine/reference/builder/#entrypoint


vantage6

Fig. 4.7: Each container can spawn new containers in the network. Each container is provided with a unique token
which they can use to communicate to the vantage6-server.

The token to which the containers have access supplies limited permissions to the container. For example, the token
can be used to create additional tasks, but only in the same collaboration, and using the same image.

4.7.1.5 Networking

The algorithm container is deployed in an isolated network to reduce their exposure. Hence, the algorithm it cannot
reach the internet. There are two exceptions:

1. When the VPN feature is enabled on the server all algorithm containers are able to reach each other using an ip
and port over VPN.

2. The central server is reachable through a local proxy service. In the algorithm you can use the HOST, POST and
API_PATH to find the address of the server.

Note: We are working on a whitelisting feature which allows a node to configure addresses that the algorithm container
is able to reach.

VPN connection

Algorithm containers within the same task can communicate directly with each other over a VPN network. More
information on that can be found here and this section describes how to use it in an algorithm.

4.7.1.6 Cross language

Because algorithms are exchanged as Docker images they can be written in any language. This is an advantage as
developers can use their preferred language for the problem they need to solve.

Warning: The wrappers are only available for Python and (partially) R, so when you use different language you
need to handle the IO yourself. Consult the Input & Output section on what the node supplies to your algorithm
container.

4.7. Algorithm Development 73



vantage6

When data is exchanged between the user and the algorithm they both need to be able to read the data. When the
algorithm uses a language specific serialization (e.g. a pickle in the case of Python or RData in the case of R) the
user needs to use the same language to read the results. A better solution would be to use a type of serialization that is
not specific to a language. In our wrappers we use JSON for this purpose.

Note: Communication between algorithm containers can use language specific serialization as long as the different
parts of the algorithm use the same language.

4.7.2 Algorithm development step-by-step guide

This page offers a step-by-step guide to develop a vantage6 algorithm. We refer to the algorithm concepts section
regularly. In that section, we explain the fundamentals of algorithm containers in more detail than in this guide.

Also, note that this guide is mainly aimed at developers who want to develop their algorithm in Python, although we
will try to clearly indicate where this differs from algorithms written in other languages.

4.7.2.1 Starting point

When starting to develop a new vantage6 algorithm in Python, the easiest way to start is:

v6 algorithm create

Running this command will prompt you to answering some questions, which will result in a personalized starting
point or ‘boilerplate’ for your algorithm. After doing so, you will have a new folder with the name of your algorithm,
boilerplate code and a checklist in the README.md file that you can follow to complete your algorithm.

Note: There is also a boilerplate for R, but this is not flexible and it is not updated as frequently as the Python
boilerplate.

4.7.2.2 Setting up your environment

It is good practice to set up a virtual environment for your algorithm package.

# This code is just a suggestion - there are many ways of doing this.

# go to the algorithm directory
cd /path/to/algorithm

# create a Python environment. Be sure to replace <my-algorithm-env> with
# the name of your environment.
conda create -n <my-algorithm-env> python=3.10
conda activate <my-algorithm-env>

# install the algorithm dependencies
pip install -r requirements.txt

Also, it is always good to use a version control system such as git to keep track of your changes. An initial commit of
the boilerplate code could be:

74 Chapter 4. Index

https://github.com/IKNL/vtg.tpl


vantage6

cd /path/to/algorithm
git init
git add .
git commit -m "Initial commit"

Note that having your code in a git repository is necessary if you want to update your algorithm.

4.7.2.3 Implementing your algorithm

Your personalized starting point should make clear to you which functions you need to implement - there are TODO
comments in the code that indicate where you need to add your own code.

You may wonder why the boilerplate code is structured the way it is. This is explained in the code structure section.

4.7.2.4 Environment variables

The algorithms have access to several environment variables. You can also specify additional environment variables
via the algorithm_env option in the node configuration files (see the example node configuration file).

Environment variables provided by the vantage6 infrastructure are used to locate certain files or to add local configu-
ration settings into the container. These are usually used in the Python wrapper and you don’t normally need them in
your functions. However, you can access them in your functions as follows:

def my_function():
input_file = os.environ["INPUT_FILE"]
token_file = os.environ["DEFAULT_DATABASE_URI"]

# do something with the input file and database URI
pass

The environment variables that you specify in the node configuration file can be used in the exact same manner. You
can view all environment variables that are available to your algorithm by print(os.environ).

4.7.2.5 Returning results

Returning the results of you algorithm is rather straightforward. At the end of your algorithm function, you can simply
return the results as a dictionary:

def my_function(column_name: str):
return {

"result": 42
}

These results will be returned to the user after the algorithm has finished.

Warning: The results that you return should be JSON serializable. This means that you cannot, for example, return
a pandas.DataFrame or a numpy.ndarray (such objects may not be readable to a non-Python using recipient or
may even be insecure to send over the internet). They should be converted to a JSON-serializable format first.

4.7. Algorithm Development 75



vantage6

4.7.2.6 Example functions

Just an example of how you can implement your algorithm:

Central function

from vantage6.algorithm.tools.decorators import algorithm_client
from vantage6.client.algorithm_client import AlgorithmClient

@algorithm_client
def main(client: AlgorithmClient, *args, **kwargs):
# Run partial function.
task = client.task.create(

{
"method": "my_algorithm",
"args": args,
"kwargs": kwargs

},
organization_ids=[1, 2]

)

# wait for the federated part to complete
# and return
results = wait_and_collect(task)

return results

Partial function

import pandas as pd
from vantage6.algorithm.tools.decorators import data

@data(1)
def my_partial_function(data: pd.DataFrame, column_name: str):

# do something with the data
data[column_name] = data[column_name] + 1

# return the results
return {

"result": sum(data[colum_name].to_list())
}

76 Chapter 4. Index



vantage6

4.7.2.7 Testing your algorithm

It can be helpful to test your algorithm outside of Docker using the MockAlgorithmClient. This may save time as
it does not require you to set up a test infrastructure with a vantage6 server and nodes, and allows you to test your
algorithm without building a Docker image every time. The algorithm boilerplate code comes with a test file that you
can use to test your algorithm using the MockAlgorithmClient - you can of course extend that to add more or different
tests.

The MockAlgorithmClient has the same interface as the AlgorithmClient, so it should be easy to switch between the
two. An example of how you can use the MockAlgorithmClient to test your algorithm is included in the boilerplate
code.

4.7.2.8 Writing documentation

It is important that you add documentation of your algorithm so that users know how to use it. In principle, you may
choose any format of documentation, and you may choose to host it anywhere you like. However, in our experience
it works well to keep your documentation close to your code. We recommend using the readthedocs platform to
host your documentation. Alternatively, you could use a README file in the root of your algorithm directory - if the
documentation is not too extensive, this may be sufficient.

Note: We intend to provide a template for the documentation of algorithms in the future. This template will be based
on the readthedocs platform.

4.7.2.9 Package & distribute

The algorithm boilerplate comes with a Dockerfile that is a blueprint for creating a Docker image of your algorithm.
This Docker image is the package that you will distribute to the nodes.

If you go to the folder containing your algorithm, you will also find the Dockerfile there, immediately at the top directory.
You can then build the project as follows:

docker build -t repo/image:tag .

The -t indicated the name of your image. This name is also used as reference where the image is located on the internet.
Once the Docker image is created it needs to be uploaded to a registry so that nodes can retrieve it, which you can do
by pushing the image:

docker push repo/image:tag

Here are a few examples of how to build and upload your image:

# Build and upload to Docker Hub. Replace <my-user-name> with your Docker
# Hub username and make sure you are logged in with ``docker login``.
docker build -t my-user-name/algorithm-example:latest .
docker push my-user-name/algorithm-example:latest

# Build and upload to private registry. Here you don't need to provide
# a username but you should write out the full image URL. Also, again you
# need to be logged in with ``docker login``.
docker build -t harbor2.vantage6.ai/PROJECT/algorithm-example:latest .
docker push harbor2.vantage6.ai/PROJECT/algorithm-example:latest

Now that your algorithm has been uploaded it is available for nodes to retrieve when they need it.

4.7. Algorithm Development 77



vantage6

4.7.2.10 Calling your algorithm from vantage6

If you want to test your algorithm in the context of vantage6, you should set up a vantage6 infrastructure. You should
create a server and at least one node (depending on your algorithm you may need more). Follow the instructions in the
Server admin guide and Node admin guide to set up your infrastructure. If you are running them on the same machine,
take care to provide the node with the proper address of the server as detailed here.

Once your infrastructure is set up, you can create a task for your algorithm. You can do this either via the UI or via the
Python client.

4.7.2.11 Updating your algorithm

At some point, there may be changes in the vantage6 infrastructure that require you to update your algorithm. Such
changes are made available via the v6 algorithm update command. This command will update your algorithm to
the latest version of the vantage6 infrastructure.

You can also use the v6 algorithm update command to update your algorithm if you want to modify your answers
to the questionnaire. In that case, you should be sure to commit the changes in git before running the command.

4.7.3 Algorithm code structure

Note: These guidelines are Python specific.

Here we provide some more information on algorithm code is organized. Most of these structures are generated auto-
matically when you create a personalized algorithm starting point. We detail them here so that you understand why
the algorithm code is structured as it is, and so that you know how to modify it if necessary.

4.7.3.1 Defining functions

The functions that will be available to the user have to be defined in the __init__.py file at the base of your algorithm
module. Other than that, you have complete freedom in which functions you implement.

Vantage6 algorithms commonly have an orchestator or aggregator part and a remote part. The orchestrator part is
responsible for combining the partial results of the remote parts. The remote part is usually executed at each of the
nodes included in the analysis. While this structure is common for vantage6 algorithms, it is not required.

If you do follow this structure however, we recommend the following file structure:

my_algorithm/
__init__.py
central.py
partial.py

where __init__.py contains the following:

from .central import my_central_function
from .partial import my_partial_function

and where central.py and partial.py obviously contain the implementation of those functions.

78 Chapter 4. Index



vantage6

4.7.3.2 Implementing the algorithm functions

Let’s say you are implementing a function called my_function:

def my_function(column_name: str):
pass

You have complete freedom as to what arguments you define in your function; column_name is just an example. Note
that these arguments have to be provided by the user when the algorithm is called. This is explained here for the Python
client.

Often, you will want to use the data that is available at the node. This data can be provided to your algorithm function
in the following way:

import pandas as pd
from vantage6.algorithm.tools.decorators import data

@data(2)
def my_function(df1: pd.DataFrame, df2: pd.DataFrame, column_name: str):

pass

The @data(2) decorator indicates that the first two arguments of the function are dataframes that should be provided
by the vantage6 infrastructure. In this case, the user would have to specify two databases when calling the algorithm.
Note that depending on the type of the database used, the user may also have to specify additional parameters such as
a SQL query or the name of a worksheet in an Excel file.

Note that it is also possible to just specify @data() without an argument - in that case, a single dataframe is added to
the arguments.

For some data sources it’s not trivial to construct a dataframe from the data. One of these data sources is the OHDSI
OMOP CDM database. For this data source, the @database_connection is available:

from rpy2.robjects import RS4
from vantage6.algorithm.tools.decorators import (

database_connection, OHDSIMetaData
)

@database_connection(types=["OMOP"], include_metadata=True)
def my_function(connection: RS4, metadata: OHDSIMetaData,

<other_arguments>):
pass

This decorator provides the algorithm with a database connection that can be used to interact with the database. For
instance, you can use this connection to execute functions from python-ohdsi package. The include_metadata ar-
gument indicates whether the metadata of the database should also be provided. It is possible to connect to multiple
databases at once, but you can also specify a single database by using the types argument.

from rpy2.robjects import RS4
from vantage6.algorithm.tools.decorators import database_connection

@database_connection(types=["OMOP", "OMOP"], include_metadata=False)
def my_function(connection1: RS4, connection2: Connection,

<other_arguments>):
pass

4.7. Algorithm Development 79

https://python-ohdsi.readthedocs.io/


vantage6

Note: The @database_connection decorator is current only available for OMOP CDM databases. The connection
object RS4 is an R object, mapped to Python using the rpy2, package. This object can be passed directly on to the
functions from python-ohdsi <https://python-ohdsi.readthedocs.io/>.

Another useful decorator is the @algorithm_client decorator:

import pandas as pd
from vantage6.client.algorithm_client import AlgorithmClient
from vantage6.algorithm.tools.decorators import algorithm_client, data

@data()
@algorithm_client
def my_function(client: AlgorithmClient, df1: pd.DataFrame, column_name: str):

pass

This decorator provides the algorithm with a client that can be used to interact with the vantage6 central server. For
instance, you can use this client in the central part of an algorithm to create a subtasks for each node with client.
task.create(). A full list of all commands that are available can be found in the algorithm client documentation.

Warning: The decorators @data and @algorithm_client each have one reserved keyword: mock_data for the
@data decorator and mock_client for the @algorithm_client decorator. These keywords should not be used
as argument names in your algorithm functions.

The reserved keywords are used by the MockAlgorithmClient to mock the data and the algorithm client. This is
useful for testing your algorithm locally.

4.7.3.3 Algorithm wrappers

The vantage6 wrappers are used to simplify the interaction between the algorithm and the node. The wrappers are
responsible for reading the input data from the data source and supplying it to the algorithm. They also take care of
writing the results back to the data source.

As algorithm developer, you do not have to worry about the wrappers. The main point you have to make sure is that
the following line is present at the end of your Dockerfile:

CMD python -c "from vantage6.algorithm.tools.wrap import wrap_algorithm; wrap_algorithm()
→˓"

The wrap_algorithm function will wrap your algorithm to ensure that the vantage6 algorithm tools are available to
it. Note that the wrap_algorithm function will also read the PKG_NAME environment variable from the Dockerfile
so make sure that this variable is set correctly.

For R, the command is slightly different:

CMD Rscript -e "vtg::docker.wrapper('$PKG_NAME')"

Also, note that when using R, this only works for CSV files.

80 Chapter 4. Index

https://rpy2.github.io/


vantage6

4.7.3.4 VPN

Within vantage6, it is possible to communicate with algorithm instances running on different nodes via the VPN network
feature. Each of the algorithm instances has their own IP address and port within the VPN network. In your algorithm
code, you can use the AlgorithmClient to obtain the IP address and port of other algorithm instances. For example:

from vantage6.client import AlgorithmClient

def my_function(client: AlgorithmClient, ...):
# Get the IP address and port of the algorithm instance with id 1
child_addresses = client.get_child_addresses()
# returns something like:
# [
# {
# 'port': 1234,
# 'ip': 11.22.33.44,
# 'label': 'some_label',
# 'organization_id': 22,
# 'task_id': 333,
# 'parent_id': 332,
# }, ...
# ]

# Do something with the IP address and port

The function get_child_addresses() gets the VPN addresses of all child tasks of the current task. Similarly, the
function get_parent_address() is available to get the VPN address of the parent task. Finally, there is a client
function get_addresses() that returns the VPN addresses of all algorithm instances that are part of the same task.

VPN communication is only possible if the docker container exposes ports to the VPN network. In the algorithm
boilerplate, one port is exposed by default. If you need to expose more ports (e.g. for sending different information to
different parts of your algorithm), you can do so by adding lines to the Dockerfile:

# port 8888 is used by the algorithm for communication purposes
EXPOSE 8888
LABEL p8888 = "some-label"

# port 8889 is used by the algorithm for data-exchange
EXPOSE 8889
LABEL p8889 = "some-other-label"

The EXPOSE command exposes the port to the VPN network. The LABEL command adds a label to the port. This label
returned with the clients’ get_addresses() function suite. You may specify as many ports as you need. Note that
you must specify the label with p as prefix followed by the port number. The vantage6 infrastructure relies on this
naming convention.

4.7. Algorithm Development 81



vantage6

4.7.3.5 Dockerfile structure

Once the algorithm code is written, the algorithm needs to be packaged and made available for retrieval by the nodes.
The algorithm is packaged in a Docker image. A Docker image is created from a Dockerfile, which acts as a blue-print.

The Dockerfile is already present in the boilerplate code. Usually, the only line that you need to update is the PKG_NAME
variable to the name of your algorithm package.

Warning: This classic tutorial was written for vantage6 version 2.x. The commands below have not been updated
and therefore might not work anymore. We are leaving this here for reference, as it includes some useful information
about concepts that may not be included elsewhere in this documentation.

4.7.4 Classic Tutorial

In this section the basic steps for creating an algorithm for horizontally partitioned data are explained.

Note: The final code of this tutorial is published on Github. The algorithm is also published in our Docker registry:
harbor2.vantage6.ai/demo/average

It is assumed that it is mathematically possible to create a federated version of the algorithm you want to use. In the
following sections we create a federated algorithm to compute the average of a distributed dataset. An overview of the
steps that we are going through:

1. Mathematically decompose the model

2. Federated implementation and local testing

3. Vantage6 algorithm wrapper

4. Dockerize and push to a registry

This tutorial shows you how to create a federated mean algorithm.

4.7.4.1 Mathematical decomposition

The mean of 𝑄 = [𝑞1, 𝑞2...𝑞𝑛] is computed as:

𝑄𝑚𝑒𝑎𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

𝑞𝑖 =
𝑞1 + 𝑞2 + ...+ 𝑞𝑛

𝑛

When dataset 𝑄 is horizontally partitioned in dataset 𝐴 and 𝐵:
𝐴 = [𝑎1, 𝑎2...𝑎𝑗 ] = [𝑞1, 𝑞2...𝑞𝑗 ]

𝐵 = [𝑏1, 𝑏2...𝑏𝑘] = [𝑞𝑗+1, 𝑞𝑗+2...𝑞𝑛]

We would like to compute 𝑄𝑚𝑒𝑎𝑛 from dataset A and B. This could be computed as:

𝑄𝑚𝑒𝑎𝑛 =
(𝑎1 + 𝑎2 + ...+ 𝑎𝑗) + (𝑏1 + 𝑏2 + ...+ 𝑏𝑘)

𝑗 + 𝑘
=

∑︀
𝐴+

∑︀
𝐵

𝑗 + 𝑘

Both the number of samples in each dataset and the total sum of each dataset is needed. Then we can compute the
global average of dataset 𝐴 and 𝐵.

Note: We cannot simply compute the average on each node and combine them, as this would be mathematically
incorrect. This would only work if dataset A and B contain the exact same number of samples.

82 Chapter 4. Index

https://github.com/iknl/v6-average-py


vantage6

4.7.4.2 Federated implementation

Warning: In this example we use python, however you are free to use any language. The only requirements are:
1) It has to be able to create HTTP-requests, and 2) has to be able to read and write to files.

However, if you use a different language you are not able to use our wrapper. Reach out to us on Discord to discuss
how this works.

A federated algorithm consist of two parts:

1. A federated part of the algorithm which is responsible for creating the partial results. In our case this would be
computing (1) the sum of the observations, and (2) the number of observations.

2. A central part of the algorithm which is responsible for combining the partial results from the nodes. In the case
of the federated mean that would be dividing the total sum of the observations by the total number of observations.

Note: The central part of the algorithm can either be run on the machine of the researcher himself or in a master
container which runs on a node. The latter is the preferred method.

In case the researcher runs this part, he/she needs to have a proper setup to do so (i.e. a Python environment with the
necessary dependencies). This can be useful when developing new algorithms.

Federated part

The node that runs this part contains a CSV-file with one column (specified by the argument column_name) which we
want to use to compute the global mean. We assume that this column has no NaN values.

import pandas

def federated_part(path, column_name="numbers"):
"""Compute the sum and number of observations of a column"""

# extract the column numbers from the CSV
numbers = pandas.read_csv(path)[column_name]

# compute the sum, and count number of rows
local_sum = numbers.sum()
local_count = len(numbers)

# return the values as a dict
return {

"sum": local_sum,
"count": local_count

}

4.7. Algorithm Development 83

https://discord.gg/yAyFf6Y


vantage6

Central part

The central algorithm receives the sums and counts from all sites and combines these to a global mean. This could be
from one or more sites.

def central_part(node_outputs):
"""Combine the partial results to a global average"""
global_sum = 0
global_count = 0
for output in node_outputs:

global_sum += output["sum"]
global_count += output["count"]

return {"average": global_sum / global_count}

Local testing

To test, simply create two datasets A and B, both having a numerical column numbers. Then run the following:

outputs = [
federated_part("path/to/dataset/A"),
federated_part("path/to/dataset/B")

]
Q_average = central_part(outputs)["average"]
print(f"global average = {Q_average}.")

4.7.4.3 Vantage6 integration

Note: A good starting point would be to use the boilerplate code from our Github. This section outlines the steps
needed to get to this boilerplate but also provides some background information.

Note: In this example we use a csv-file. It is also possible to use other types of data sources. This tutorial makes use
of our algorithm wrapper which is currently only available for csv, SPARQL and Parquet files.

Other wrappers like SQL, OMOP, etc. are under consideration. Let us now if you want to use one of these or other
datasources.

Now that we have a federated implementation of our algorithm we need to make it compatible with the vantage6
infrastructure. The infrastructure handles the communication with the server and provides data access to the algorithm.

The algorithm consumes a file containing the input. This contains both the method name to be triggered as well as
the arguments provided to the method. The algorithm also has access to a CSV file (in the future this could also be a
database) on which the algorithm can run. When the algorithm is finished, it writes back the output to a different file.

The central part of the algorithm has to be able to create (sub)tasks. These subtasks are responsible for executing the
federated part of the algorithm. The central part of the algorithm can either be executed on one of the nodes in the
vantage6 network or on the machine of a researcher. In this example we only show the case in which one of the nodes
executes the central part of the algorithm. The node provides the algorithm with a JWT token so that the central part
of the algorithm has access to the server to post these subtasks.

84 Chapter 4. Index

https://github.com/iknl/v6-boilerplate-py


vantage6

Algorithm Structure

The algorithm needs to be structured as a Python package. This way the algorithm can be installed within the Docker
image. The minimal file-structure would be:

project_folder
Dockerfile
setup.py
algorithm_pkg

__init__.py

We also recommend adding a README.md, LICENSE and requirements.txt to the project_folder.

setup.py

Contains the setup method to create a package from your algorithm code. Here you specify some details about your
package and the dependencies it requires.

from os import path
from codecs import open
from setuptools import setup, find_packages

# we're using a README.md, if you do not have this in your folder, simply
# replace this with a string.
here = path.abspath(path.dirname(__file__))
with open(path.join(here, 'README.md'), encoding='utf-8') as f:

long_description = f.read()

# Here you specify the meta-data of your package. The `name` argument is
# needed in some other steps.
setup(

name='v6-average-py',
version="1.0.0",
description='vantage6 average',
long_description=long_description,
long_description_content_type='text/markdown',
url='https://github.com/IKNL/v6-average-py',
packages=find_packages(),
python_requires='>=3.10',
install_requires=[

'vantage6-client',
# list your dependencies here:
# pandas, ...

]
)

Note: The setup.py above is sufficient in most cases. However if you want to do more advanced stuff (like adding
static data, or a CLI) you can use the extra arguments from setup.

4.7. Algorithm Development 85

https://packaging.python.org/tutorials/packaging-projects/
https://packaging.python.org/guides/distributing-packages-using-setuptools/#setup-args


vantage6

Dockerfile

The Dockerfile contains the recipe for building the Docker image. Typically you only have to change the argument
PKG_NAME to the name of you package. This name should be the same as as the name you specified in the setup.py.
In our case that would be v6-average-py.

# This specifies our base image. This base image contains some commonly used
# dependancies and an install from all vantage6 packages. You can specify a
# different image here (e.g. python:3). In that case it is important that
# `vantage6-client` is a dependancy of you project as this contains the wrapper
# we are using in this example.
FROM harbor2.vantage6.ai/algorithms/algorithm-base

# Change this to the package name of your project. This needs to be the same
# as what you specified for the name in the `setup.py`.
ARG PKG_NAME="v6-average-py"

# This will install your algorithm into this image.
COPY . /app
RUN pip install /app

# This will run your algorithm when the Docker container is started. The
# wrapper takes care of the IO handling (communication between node and
# algorithm). You dont need to change anything here.
ENV PKG_NAME=${PKG_NAME}
CMD python -c "from vantage6.tools.docker_wrapper import docker_wrapper; docker_wrapper('
→˓${PKG_NAME}')"

__init__.py

This contains the code for your algorithm. It is possible to split this into multiple files, however the methods that should
be available to the researcher should be in this file. You can do that by simply importing them into this file (e.g. from
.average import my_nested_method)

We can distinguish two types of methods that a user can trigger:

name description pre-
fix

arguments

master Central part of the algorithm. Receives a client as argument which pro-
vides an interface to the central server. This way the master can create tasks
and collect their results.

(client,
data, *args,
**kwargs)

Remote
proce-
dure call

Consumes the data at the node to compute the partial. RPC_ (data, *args,
**kwargs)

Warning: Everything that is returned by thereturn statement is sent back to the central vantage6-server. This
should never contain any privacy-sensitive information.

86 Chapter 4. Index



vantage6

Warning: The client the master method receives is an AlgorithmClient (or a ContainerClient if you are
using an older version), which is different than the client you use as a user.

For our average algorithm the implementation will look as follows:

import time

from vantage6.tools.util import info

def master(client, data, column_name):
"""Combine partials to global model

First we collect the parties that participate in the collaboration.
Then we send a task to all the parties to compute their partial (the
row count and the column sum). Then we wait for the results to be
ready. Finally when the results are ready, we combine them to a
global average.

Note that the master method also receives the (local) data of the
node. In most usecases this data argument is not used.

The client, provided in the first argument, gives an interface to
the central server. This is needed to create tasks (for the partial
results) and collect their results later on. Note that this client
is a different client than the client you use as a user.
"""

# Info messages can help you when an algorithm crashes. These info
# messages are stored in a log file which is send to the server when
# either a task finished or crashes.
info('Collecting participating organizations')

# Collect all organization that participate in this collaboration.
# These organizations will receive the task to compute the partial.
organizations = client.get_organizations_in_my_collaboration()
ids = [organization.get("id") for organization in organizations]

# Request all participating parties to compute their partial. This
# will create a new task at the central server for them to pick up.
# We've used a kwarg but is is also possible to use `args`. Although
# we prefer kwargs as it is clearer.
info('Requesting partial computation')
task = client.create_new_task(

input_={
'method': 'average_partial',
'kwargs': {

'column_name': column_name
}

},
organization_ids=ids

)

(continues on next page)

4.7. Algorithm Development 87



vantage6

(continued from previous page)

# Now we need to wait untill all organizations(/nodes) finished
# their partial. We do this by polling the server for results. It is
# also possible to subscribe to a websocket channel to get status
# updates.
info("Waiting for results")
results = client.wait_for_results(task_id=task.get("id"))

# Now we can combine the partials to a global average.
global_sum = 0
global_count = 0
for result in results:

global_sum += result["sum"]
global_count += result["count"]

return {"average": global_sum / global_count}

def RPC_average_partial(data, column_name):
"""Compute the average partial

The data argument contains a pandas-dataframe containing the local
data from the node.
"""

# extract the column_name from the dataframe.
info(f'Extracting column {column_name}')
numbers = data[column_name]

# compute the sum, and count number of rows
info('Computing partials')
local_sum = numbers.sum()
local_count = len(numbers)

# return the values as a dict
return {

"sum": local_sum,
"count": local_count

}

Local testing

Now that we have a vantage6 implementation of the algorithm it is time to test it. Before we run it in a vantage6 setup
we can test it locally by using the ClientMockProtocol which simulates the communication with the central server.

Before we can locally test it we need to (editable) install the algorithm package so that the Mock client can use it.
Simply go to the root directory of your algorithm package (with the setup.py file) and run the following:

pip install -e .

Then create a script to test the algorithm:

88 Chapter 4. Index



vantage6

from vantage6.tools.mock_client import ClientMockProtocol

# Initialize the mock server. The datasets simulate the local datasets from
# the node. In this case we have two parties having two different datasets:
# a.csv and b.csv. The module name needs to be the name of your algorithm
# package. This is the name you specified in `setup.py`, in our case that
# would be v6-average-py.
client = ClientMockProtocol(

datasets=["local/a.csv", "local/b.csv"],
module="v6-average-py"

)

# to inspect which organization are in your mock client, you can run the
# following
organizations = client.get_organizations_in_my_collaboration()
org_ids = ids = [organization["id"] for organization in organizations]

# we can either test a RPC method or the master method (which will trigger the
# RPC methods also). Lets start by triggering an RPC method and see if that
# works. Note that we do *not* specify the RPC_ prefix for the method! In this
# example we assume that both a.csv and b.csv contain a numerical column `age`.
average_partial_task = client.create_new_task(

input_={
'method':'average_partial',
'kwargs': {

'column_name': 'age'
}

},
organization_ids=org_ids

)

# You can directly obtain the result (we dont have to wait for nodes to
# complete the tasks)
results = client.result.from_task(average_partial_task.get("id"))
print(results)

# To trigger the master method you also need to supply the `master`-flag
# to the input. Also note that we only supply the task to a single organization
# as we only want to execute the central part of the algorithm once. The master
# task takes care of the distribution to the other parties.
average_task = client.create_new_task(

input_={
'master': 1,
'method':'master',
'kwargs': {

'column_name': 'age'
}

},
organization_ids=[org_ids[0]]

)
results = client.result.from_task(average_task.get("id"))
print(results)

4.7. Algorithm Development 89



vantage6

Building and Distributing

Now that we have a fully tested algorithm for the vantage6 infrastructure. We need to package it so that it can be
distributed to the data-stations/nodes. Algorithms are delivered in Docker images. So that’s where we need the
Dockerfile for. To build an image from our algorithm (make sure you have docker installed and it’s running) you can
run the following command from the root directory of your algorithm project.

docker build -t harbor2.vantage6.ai/demo/average .

The option -t specifies the (unique) identifier used by the researcher to use this algorithm. Usually this includes the
registry address (harbor2.vantage6.ai) and the project name (demo).

Note: In case you are using docker hub as registry, you do not have to specify the registry or project as these are set
by default to the Docker hub and your docker hub username.

docker push harbor2.vantage6.ai/demo/average

Note: Reach out to us on Discord if you want to use our registries (harbor2.vantage6.ai and harbor2.vantage6.ai).

4.8 Feature descriptions

Under construction

The vantage6 platform contains many features - some of which are optional, some which are always active. This section
aims to give an overview of the features and how they may be used.

Each component has its own set of features. The features are described in the following sections, as well as a section
on inter-component features.

4.8.1 Server features

The following pages each describe one feature of the vantage6 server.

4.8.1.1 Two-factor authentication

Available since version 3.5.0

The vantage6 infrastructure includes the option to use two-factor authentication (2FA). This option is set at the server
level: the server administrator decides if it is either enabled or disabled for everyone. Users cannot set this them-
selves. Server administrators can choose to require 2FA when prompted in v6 server new, or by adding the option
two_factor_auth: true to the configuration file (see Configure).

Currently, the only 2FA option is to use Time-based one-time passwords (TOTP) With this form of 2FA, you use your
phone to scan a QR code using an authenticator app like LastPass authenticator or Google authenticator. When you
scan the QR code, your vantage6 account is added to the authenticator app and will show you a 6-digit code that changes
every 30 seconds.

90 Chapter 4. Index

https://discord.gg/yAyFf6Y
https://www.twilio.com/docs/glossary/totp


vantage6

Setting up 2FA for a user

If a new user logs in, or if a user logs in for the first time after a server administrator has enabled 2FA, they will be
required to set it up. The endpoint /token/user will first verify that their password is correct, and then set up 2FA.
It does so by generating a random TOTP secret for the user, which is stored in the database. From this secret, a URI is
generated that can be used to visualize the QR code.

If the user is logging in via the vantage6 user interface, this QR code will be visualized to allow the user to scan it. Also,
users that login via the Python client will be shown a QR code. In both cases, they also have the option to manually
enter the TOTP secret into their authenticator app, in case scanning the QR code is not possible.

Users that log in via the R client or directly via the API will have to visualize the QR code themselves, or manually
enter the TOTP secret into their authenticator app.

Using 2FA

If a user has already setup 2FA tries to login, the endpoint /token/user will require that they provide their 6-digit
TOTP code via the mfa_code argument. This code will be checked using the TOTP secret stored in the database, and
if it is valid, the user will be logged in.

To prevent users with a slow connection from having difficulty logging in, valid codes from the 30s period directly
prior to the current period will also be logged in.

Resetting 2FA

When a user loses access to their 2FA, they may reset it via their email. They should use the endpoint /recover/
2fa/lost to get an email with a reset token and then use the reset token in /recover/2fa/reset to reset 2FA. This
endpoint will give them a new QR code that they can visualize just like the initial QR code.

4.8.1.2 Horizontal scaling

By horizontal scaling, we mean that you can run multiple instances of the vantage6 server simultaneously to handle a
high workload. This is useful when a single machine running the server is no longer sufficient to handle all requests.

How it works

Horizontal scaling with vantage6 can be done using a RabbitMQ server. RabbitMQ is a widely used message broker.
Below, we will first explain how we use RabbitMQ, and then discuss the implementation.

The websocket connection between server and nodes is used to process various changes in the network’s state. For
example, a node can create a new (sub)task for the other nodes in the collaboration. The server then communicates
these tasks via the socket connection. Now, if we use multiple instances of the central server, different nodes in the
same collaboration may connect to different instances, and then, the server would not be able to deliver the new task
properly. This is where RabbitMQ comes in.

When RabbitMQ is enabled, the websocket messages are directed over the RabbitMQ message queue, and delivered to
the nodes regardless of which server instance they are connected to. The RabbitMQ service thus helps to ensure that
all websocket events are still communicated properly to all involved parties.

4.8. Feature descriptions 91

https://www.twilio.com/docs/glossary/totp
https://https://www.rabbitmq.com/


vantage6

How to use

If you use multiple server instances, you should always connect them to the same RabbitMQ instance. You can achieve
this by adding your RabbitMQ server when you create a new server with v6 server new, or you can add it later to
your server configuration file as follows:

rabbitmq_uri: amqp://$user:$password@$host:$port/$vhost

Where $user is the username, $password is the password, $host is the URL where your RabbitMQ service is running,
$port is the queue’s port (which is 5672 if you are using the RabbitMQ Docker image), and $vhost is the name of
your virtual host (you could e.g. run one instance group per vhost).

Deploy

If you are running a test server with v6 server start, a RabbitMQ docker container will be started automatically
for you. This docker container contains a management interface which will be available on port 15672.

For deploying a production server, there are several options to run RabbitMQ. For instance, you can install RabbitMQ
on Azure.

4.8.1.3 API response structure

Each API endpoint returns a JSON response. All responses are structured in the same way, loosely following HATEOAS
rules. An example is detailed below:

>>> client.task.get(task_id)
{

"id": 1,
"name": "test",
"results": "/api/result?task_id=1",
"image": "harbor2.vantage6.ai/testing/v6-test-py",
...

}

The response for this task includes a link to the results that are attached to this task. More detail on the results are
provided when collecting the response for that link.

4.8.2 Node features

The following pages each describe one feature of the vantage6 node.

** Under construction **

92 Chapter 4. Index

https://www.rabbitmq.com/vhosts.html
https://www.golinuxcloud.com/install-rabbitmq-on-azure
https://www.golinuxcloud.com/install-rabbitmq-on-azure


vantage6

4.8.2.1 Whitelisting

Available since version 3.9.0

Vantage6 algorithms are normally disconnected from the internet, and are therefore unable to connect to access data
that is not connected to the node on node startup. Via this feature it is possible to whitelist certain domains, ips and
ports to allow the algorithm to connect to these resources. It is important to note that only the http protocol is supported.
If you require a different protocol, please look at SSH Tunnel.

Warning: As a node owner you are responsible for the security of your node. Make sure you understand the
implications of whitelisting before enabling this feature.

Be aware that when a port is whitelisted it is whitelisted for all domains and ips.

Setting up whitelisting

Add block whitelist to the node configuration file:

whitelist:
domains:

- .google.com
- github.com
- host.docker.internal # docker host ip (windows/mac)

ips:
- 172.17.0.1 # docker bridge ip (linux)
- 8.8.8.8

ports:
- 443

Note: This feature makes use of Squid, which is a proxy server. For every domain, ip and port a acl directive is
created. See their documentation for more details on what valid values are.

Implementation details / Notes

The algorithm container is provided with the environment variables http_proxy, HTTP_PROXY, https_proxy,
HTTPS_PROXY, no_proxy and NO_PROXY. Unfortunately, there is no standard for handling these variables. Therefore,
whether this works will depend on the application you are using. See this post for more details.

In case the algorithm tries to connect to a domain that is not whitelisted, a http 403 error will be returned by the squid
instance.

Warning: Make sure the requests from the algorithm are using the environment variables. Some libraries will
ignore these variables and use their own configuration.

• The requests library will work for all cases.

• The curl command will not work for vantage6 VPN addresses as the format of no_proxy variable is not
supported. You can fix this by using the --noproxy option when requesting a VPN address.

4.8. Feature descriptions 93

http://www.squid-cache.org/Doc/config/acl/
https://superuser.com/questions/944958/are-http-proxy-https-proxy-and-no-proxy-environment-variables-standard/1166790#1166790


vantage6

Note: VPN addresses in no_proxy have the same format as in the node configuration file, by default 10.76.0.0/16.
Make sure the request library understands this format when connecting to a VPN address.

4.8.2.2 SSH Tunnel

Available since version 3.7.0

Vantage6 algorithms are normally disconnected from the internet, and are therefore unable to connect to access data
that is not connected to the node on node startup. Via this feature, however, it is possible to connect to a remote server
through a secure SSH connection. This allows you to connect to a dataset that is hosted on another machine than your
node, as long as you have SSH access to that machine.

An alternative solution would be to create a whitelist of domains, ports and IP addresses that are allowed to be accessed
by the algorithm.

Setting up SSH tunneling

1. Create a new SSH key pair

Create a new key pair without a password on your node machine. To do this, enter the command below in your terminal,
and leave the password empty when prompted.

ssh-keygen -t rsa

You are required not to use a password for the private key, as vantage6 will set up the SSH tunnel without user inter-
vention and you will therefore not be able to enter the password in that process.

2. Add the public key to the remote server

Copy the contents of the public key file (your_key.pub) to the remote server, so that your node will be allowed to
connect to it. In the most common case, this means adding your public key to the ~/.ssh/authorized_keys file on
the remote server.

3. Add the SSH tunnel to your node configuration

An example of the SSH tunnel configuration can be found below. See here for a full example of a node configuration
file.

databases:
httpserver: http://my_http:8888

ssh-tunnels:
- hostname: my_http
ssh:
host: my-remote-machine.net
port: 22
fingerprint: "ssh-rsa AAAAE2V....wwef987vD0="
identity:
username: bob

(continues on next page)

94 Chapter 4. Index



vantage6

(continued from previous page)

key: /path/to/your/private/key
tunnel:
bind:
ip: 0.0.0.0
port: 8888

dest:
ip: 127.0.0.1
port: 9999

There are a few things to note about the SSH tunnel configuration:

1. You can provide multiple SSH tunnels in the ssh-tunnels list, by simply extending the list.

2. The hostname of each tunnel should come back in one of the databases, so that they may be accessible to the
algorithms.

3. The host is the address at which the remote server can be reached. This is usually an IP address or a domain
name. Note that you are able to specify IP addresses in the local network. Specifying non-local IP addresses is
not recommended, as you might be exposing your node if the IP address is spoofed.

4. The fingerprint is the fingerprint of the remote server. You can usually find it in /etc/ssh/ssh_host_rsa_key.pub
on the remote server.

5. The identity section contains the username and path to the private key your node is using. The username is the
username you use to log in to the remote server, in the case above it would be ssh bob@my-remote-machine.
net.

6. The tunnel section specifies the port on which the SSH tunnel will be listening, and the port on which the
remote server is listening. In the example above, on the remote machine, there would be a service listening on
port 9999 on the machine itself (which is why the IP is 127.0.0.1 a.k.a. localhost). The tunnel will be bound to
port 8888 on the node machine, and you should therefore take care to include the correct port in your database
path.

Using the SSH tunnel

How you should use the SSH tunnel depends on the service that you are running on the other side. In the example
above, we are running a HTTP server and therefore we should obtain data via HTTP requests. In the case of a SQL
service, one would need to send SQL queries to the remote server instead.

Note: We aim to extend this section later with an example of an algorithm that is using this feature.

4.8.2.3 Linked docker containers

Available since version 3.2.0

You may have a service running in a Docker container that you would like to make available to your algorithm. This
may be useful, for example, if you are running a (test) SQL database in a container and want to make it available to
your algorithm without having to set up whitelisting or SSH tunnels.

You can define the container that you want to make available to the algorithm in the docker_services section of your
node configuration file:

4.8. Feature descriptions 95



vantage6

where container_name is the name of your Docker container. This container will be made available in the Docker
network where the algorithm containers are running, so your algorithm will be able to access it via http://localhost.
The container_label will be used as alias for the container in the isolated Docker network.

Note that this option only works if your container with container_name is already running when you start the node. If
it is not, the node will not be able to link the container to the isolated docker network and will print a warning.

4.8.3 Algorithm features

The following pages each describe one feature of vantage6 algorithms.

4.8.3.1 Algorithm wrappers

Algorithm wrappers are used in algorithms to make it easier for algorithms to handle input and output.

• list the available wrappers

• links to their docstrings

4.8.3.2 Algorithm container isolation

The algorithms run in vantage6 have access to the sensitive data that we want to protect. Also, the algorithms may
be built improperly, or may be outdated, which might make it vulnerable to attacks. Therefore, one of the important
security measures that vantage6 implements is that all algorithms run in a container that is not connected to the internet.
The isolation from the internet is achieved by starting the algorithm container is a Docker network that has no internet
access.

While the algorithm is thus isolated from the internet, it still has to be able to access several different resources, such
as the vantage6 server if it needs to spawn other containers for subtasks. Such communication all takes place over
interfaces that are an integral part of vantage6, and are thus considered safe. Below is a list of interfaces that are
available to the algorithm container.

• The vantage6 server is available to the algorithm container via a proxy server running on the node.

• The VPN network is available to the algorithm container via the VPN client container.

• The SSH tunnel is available to the algorithm container via the SSH tunnel container.

• The whitelisted addresses are available to the algorithm container via the Squid proxy container.

Note that all of these connections are initiated from the algorithm container. Vantage6 does not support incoming
connections to the algorithm container.

4.8.4 Communication between components

The following pages each describe one way that is used to communicate between different vantage6 components.

96 Chapter 4. Index



vantage6

4.8.4.1 SocketIO connection

A SocketIO connection is a bidirectional, persistent, event-based communication line. In vantage6, it is used for exam-
ple to send status updates from the server to the nodes or to send a signal to a node that it should kill a task.

Each socketIO connection consists of a server and one or more clients. The clients can only send a message to the
server and not to each other. The server can send messages to all clients or to a specific client. In vantage6, the central
server is the socketIO server; the clients can be nodes or users.

Note: The vantage6 user interface automatically establishes a socketIO connection with the server when the user logs
in. The user can then view the updates they are allowed to see.

Permissions

The socketIO connection is split into different rooms. The vantage6 server decides which rooms a client is allowed to
join; they will only be able to read messages from that room.

Nodes always join the room of their own collaboration, and a room of all nodes. Users only join the room of collabo-
rations whose events they are allowed to view which is checked via event view rules.

Usage in vantage6

The server sends the following events to the clients:

• Notify nodes a new task is available

• Letting nodes and users know if a node in their collaboration comes online or goes offline

• Instructing nodes to renew their token if it is expired

• Letting nodes and users know if a task changed state on a node (e.g. started, finished, failed). This is especially
important for nodes to know in case an algorithm they are running depends on the output of another node.

• Instruct nodes to kill one or more tasks

• Checking if nodes are still alive

The nodes send the following events to the server:

• Alert the server of task state changes (e.g. started, finished, failed)

• Share information about the node configuration (e.g. which algorithms are allowed to run on the node)

In theory, users could use their socketIO connection to send events, but none of the events they send will lead to action
on the server.

4.8.4.2 End to end encryption

Encryption in vantage6 is handled at organization level. Whether encryption is used or not, is set at collaboration
level. All the nodes in the collaboration need to agree on this setting. You can enable or disable encryption in the node
configuration file, see the example in All configuration options.

The encryption module encrypts data so that the server is unable to read communication between users and nodes. The
only messages that go from one organization to another through the server are computation requests and their results.
Only the algorithm input and output are encrypted. Other metadata (e.g. time started, finished, etc), can be read by the
server.

4.8. Feature descriptions 97

https://socket.io/docs/v4/


vantage6

Fig. 4.8: Encryption takes place between organizations therefore all nodes and users from the a single organization
should use the same private key.

The encryption module uses RSA keys. The public key is uploaded to the vantage6 server. Tasks and other users
can use this public key (this is automatically handled by the python-client and R-client) to send messages to the other
parties.

Note: The RSA key is used to create a shared secret which is used for encryption and decryption of the payload.

When the node starts, it checks that the public key stored at the server is derived from the local private key. If this is
not the case, the node will replace the public key at the server.

Warning: If an organization has multiple nodes and/or users, they must use the same private key.

In case you want to generate a new private key, you can use the command v6 node create-private-key. If a key
already exists at the local system, the existing key is reused (unless you use the --force flag). This way, it is easy to
configure multiple nodes to use the same key.

It is also possible to generate the key yourself and upload it by using the endpoint https://SERVER[/api_path]/
organization/<ID>.

98 Chapter 4. Index



vantage6

4.8.4.3 Algorithm-to-algorithm VPN comunication

Since version 3.0.0

Originally, all communication in the vantage6 infrastructure occurs via the central server. Algorithms and nodes could
not directly communicate with one another. Since version 3.0.0, algorithms can communicate with one another directly,
without the need to go through the central server. This is achieved by connecting the nodes to a VPN network.

The implementation of algorithm-to-algorithm communication in vantage6 is discussed at length in this paper.

When to use

Some algorithms require a lot of communication between algorithm containers before a solution is achieved. For
example, there are algorithms that uses iterative methods to optimize a solution, or algorithms that share partial machine
learning models with one another in the learning process.

For such algorithms, using the default communication method (via the central server) can be very inefficient. Also,
some popular libraries assume that direct communication between algorithm containers is possible. These libraries
would have to be adapted specifically for the vantage6 infrastructure, which is not always feasible. In such cases, it is
better to setup a VPN connection to allow algorithm containers to communicate directly with one another.

Another reason to use a VPN connection is that for some algorithms, routing all partial results through the central server
can be undeseriable. For example, with many algorithms using an MPC protocol, it may be possible for the central
party to reconstruct the original data if they have access to all partial results.

How to use

In order to use a VPN connection, a VPN server must be set up, and the vantage6 server and nodes must be configured
to use this VPN server. Below we detail How this can be done.

Installing a VPN server

To use algorithm-to-algorithm communication, a VPN server must be set up by the server administrator. The installation
instructions for the VPN server are here.

Configuring the vantage6 server

The vantage6 server must be configured to use the VPN server. This is done by adding the following configuration
snippet to the configuration file.

vpn_server:
# the URL of your VPN server
url: https://your-vpn-server.ext

# OATH2 settings, make sure these are the same as in the
# configuration file of your EduVPN instance
redirect_url: http://localhost
client_id: your_VPN_client_user_name
client_secret: your_VPN_client_user_password

# Username and password to acccess the EduVPN portal
(continues on next page)

4.8. Feature descriptions 99

https://en.wikipedia.org/wiki/Virtual_private_network
https://ebooks.iospress.nl/pdf/doi/10.3233/SHTI220682
https://en.wikipedia.org/wiki/Secure_multi-party_computation


vantage6

(continued from previous page)

portal_username: your_eduvpn_portal_user_name
portal_userpass: your_eduvpn_portal_user_password

Note that the vantage6 server does not connect to the VPN server itself. It uses the configuration above to provide nodes
with a VPN configuration file when they want to connect to VPN.

Configuring the vantage6 node

A node administrator has to configure the node to use the VPN server. This is done by adding the following configuration
snippet to the configuration file.

vpn_subnet: '10.76.0.0/16'

This snippet should include the subnet on which the node will connect to the VPN network, and should be part of the
subnet range of the VPN server. Node administrators should consult the VPN server administrator to determine which
subnet range to use.

If all configuration is properly set up, the node will automatically connect to the VPN network on startup.

Warning: If the node fails to connect to the VPN network, the node will not stop. It will print a warning message
and continue to run.

Note: Nodes that connect to a vantage6 server with VPN do not necessarily have to connect to the VPN server
themselves: they may be involved in a collaboration that does not require VPN.

How to test the VPN connection

This algorithm can be used to test the VPN connection. The script test_on_v6.py in this repository can be used to send
a test task which will print whether echoes over the VPN network are working.

Use VPN in your algorithm

If you are using the Python algorithm client, you can call the following function:

client.vpn.get_addresses()

which will return a dictionary containing the VPN IP address and port of each of the algorithms running that task.

Warning: If you are using the old algorithm client ContainerClient (which is the default in vantage6 3.x), you
should use client.get_algorithm_addresses() instead.

If you are not using the algorithm client, you can send a request to to the endpoint /vpn/algorithm/addresses on
the vantage6 server (via the node proxy server), which will return a dictionary containing the VPN IP address and port
of each of the algorithms running that task.

100 Chapter 4. Index

https://github.com/vantage6/v6-node-to-node-diagnostics


vantage6

How does it work?

As mentioned before, the implementation of algorithm-to-algorithm communication is discussed at length in this paper.
Below, we will give a brief overview of the implementation.

On startup, the node requests a VPN configuration file from the vantage6 server. The node first checks if it already has
a VPN configuration file and if so, it will try to use that. If connecting with the existing configuration file fails, it will
try to renew the configuration file’s keypair by calling /vpn/update. If that fails, or if no configuration file is present
yet (e.g. on first startup of a node), the node will request a new configuration file by calling /vpn.

The VPN configuration file is an .ovpn file that is passed to a VPN client container that establishes the VPN connection.
This VPN client container keeps running in the background for as long as the node is running.

When the VPN client container is started, a few network rules are changed on the host machine to forward the incoming
traffic on the VPN subnet to the VPN client container. This is necessary because the VPN traffic will otherwise never
reach the vantage6 containers. The VPN client container is configured to drop any traffic that does not originate from
the VPN connection.

When a task is started, the vantage6 node determines how many ports that particular algorithm requires on the local
Docker network. It determines which ports are available and then assigns those ports to the algorithm. The node then
stores the VPN IP address and the assigned ports in the database. Also, it configures the local Docker network such that
the VPN client container forwards all incoming traffic for algorithm containers to the right port on the right algorithm
container. Vice versa, the VPN client container is configured to forward outgoing traffic over the VPN network to the
right addresses.

Only when the all this configuration is completed, is the algorithm container started.

4.9 Developer community

As an open-source platform, we welcome anyone who would like to contribute to the vantage6 code and/or documen-
tation. The following sections are meant to clarify our processes in development, documentation and releasing.

4.9.1 Contribute

4.9.1.1 Support questions

If you have questions, you can use

• Github discussions

• Ask us on Discord

We prefer that you ask questions via these routes rather than creating Github issues. The issue tracker is intended to
address bugs, feature requests, and code changes.

4.9. Developer community 101

https://ebooks.iospress.nl/pdf/doi/10.3233/SHTI220682
https://github.com/vantage6/vantage6/discussions
https://discord.gg/yAyFf6Y


vantage6

4.9.1.2 Reporting issues

Issues can be posted at our Github issue page.

We distinguish between the following types of issues:

• Bug report: you encountered broken code

• Feature request: you want something to be added

• Change request: there is a something you would like to be different but it is not considered a new feature nor is
something broken

• Security vulnerabilities: you found a security issue

Each issue type has its own template. Using these templates makes it easier for us to manage them.

Warning: Security vulnerabilities should not be reported in the Github issue tracker as they should not be publi-
cally visible. To see how we deal with security vulnerabilities read our policy.

See the Security vulnerabilities section when you want to release a security patch yourself.

We distibute the open issues in sprints and hotfixes. You can check out these boards here:

• Sprints

• Hotfixes

When a high impact bug is reported, we will put it on the hotfix board and create a patch release as soon as possible.

The sprint board tracks which issues we plan to fix in which upcoming release. Low-impact bugs, new features and
changes will be scheduled into a sprint periodically. We automatically assign the label ‘new’ to all newly reported
issues to track which issues should still be scheduled.

If you would like to fix an existing bug or create a new feature, check Submitting patches for more details on e.g. how
to set up a local development environment and how the release process works. We prefer that you let us know you what
are working on so we prevent duplicate work.

4.9.1.3 Security vulnerabilities

If you are a member of the Vantage6 Github organization, you can create an security advisory in the Security tab. See
Table 4.2 on what to fill in.

If you are not a member, please reach out directly to Frank Martin and/or Bart van Beusekom, or any other project
member. They can then create a security advisory for you.

Table 4.2: Advisory details
Name Details
Ecosystem Set to pip
Package name Set to vantage6
Affected versions Specify the versions (or set of verions) that are affected
Patched version Version where the issue is addessed, you can fill this in later when the patch

is released.
Severity Determine severity score using this tool. Then use table Table 4.3 to deter-

mine the level from this score.
Common weakness enumerator
(CWE)

Find the CWE (or multiple) on this website.

102 Chapter 4. Index

https://github.com/vantage6/vantage6/issues
https://github.com/vantage6/vantage6/blob/main/SECURITY.md
https://github.com/orgs/vantage6/projects/1
https://github.com/orgs/vantage6/projects/2
https://github.com/vantage6/vantage6/security/advisories
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://cwe.mitre.org/


vantage6

Table 4.3: Severity
Score Level
0.1-3.9 Low
4.0-6.9 Medium
7.0-8.9 High
9.0-10.0 Critical

Once the advisory has been created it is possible to create a private fork from there (Look for the button Start a
temporary private fork). This private fork should be used to solve the issue.

From the same page you should request a CVE number so we can alert dependent software projects. Github will review
the request. We are not sure what this entails, but so far they approved all advisories.

4.9.1.4 Community Meetings

We host bi-monthly community meetings intended for aligning development efforts. Anyone is welcome to join al-
though they are mainly intended for infrastructure and algorithm developers. There is an opportunity to present what
your team is working on an find collaboration partners.

Community meetings are usually held on the third Thursday of the month at 11:00 AM CET on Microsoft Teams.
Reach out on Discord if you want to join the community meeting.

For more information and slides from previous meetings, check our website.

4.9.1.5 Submitting patches

If there is not an open issue for what you want to submit, please open one for discussion before submitting the PR. We
encourage you to reach out to us on Discord, so that we can work together to ensure your contribution is added to the
repository.

The workflow below is specific to the vantage6 infrastructure repository. However, the concepts for our other reposi-
tories are the same. Then, modify the links below and ignore steps that may be irrelevant to that particular repository.

Setup your environment

• Make sure you have a Github account

• Install and configure git and make

• (Optional) install and configure Miniconda

• Clone the main repository locally:

git clone https://github.com/vantage6/vantage6
cd vantage6

• Add your fork as a remote to push your work to. Replace {username} with your username.

git remote add fork https://github.com/{username}/vantage6

• Create a virtual environment to work in. If you are using miniconda:

conda create -n vantage6 python=3.10
conda activate vantage6

4.9. Developer community 103

https://discord.gg/yAyFf6Y
https://vantage6.ai/community-meetings/
https://discord.gg/yAyFf6Y
https://github.com/vantage6/vantage6


vantage6

It is also possible to use virtualenv if you do not have a conda installation.

• Update pip and setuptools

python -m pip install --upgrade pip setuptools

• Install vantage6 as development environment:

make install-dev

Coding

First, create a branch you can work on. Make sure you branch of the latest main branch:

git fetch origin
git checkout -b your-branch-name origin/main

Then you can create your bugfix, change or feature. Make sure to commit frequently. Preferably include tests that cover
your changes.

Finally, push your commits to your fork on Github and create a pull request.

git push --set-upstream fork your-branch-name

Code style

We use black to format our code. It is important that you use this style so make sure that your contribution will be
easily incorporated into the code base.

Black is automatically installed into your python environment when you run make install-dev. To automatically
enable black, we recommend that you install the Black Formatter extension from Microsoft in the VSCode marketplace.
By enabling the option ‘format on save’ you can then automatically format your code in the proper style when you save
a file.

Alternatively, or additionally, you may install a pre-commit hook that will automatically format your code when you
commit it. To do so, run the following command:

pre-commit install

You may need to run pre-commit autoupdate to update the pre-commit hook.

Unit tests & coverage

You can execute unit tests using the test command in the Makefile:

make test

If you want to execute a specific unit test (e.g. the one you just created or one that is failing), you can use a command
like:

python -m unittest tests_folder.test_filename.TestClassName.test_name

This command assumes you are in the directory above tests_folder. If you are inside the tests_folder, then you
should remove that part.

104 Chapter 4. Index

https://black.readthedocs.io/en/stable/index.html


vantage6

Verifying local code changes

While working on a new feature, it can be useful to run a server and/or nodes locally with your code changes to verify
that it does what you expect it to do. This can be done by using the commands v6 server and v6 node in combination
with the options --mount-src and optionally --image.

• The --mount-src /path/to/vantage6 option will overwrite the code that the server/node runs with your
local code when running the docker image. The provided path should point towards the root folder of the vantage6
repository - where you have your local changes.

• The --image <url_to_docker_image> can be used to point towards a custom Docker image for the node or
server. This is mostly useful when your code update includes dependency upgrades. Then, you need to build a
custom infrastructure image as the ‘old’ image does not contain the new depencey and the --mount-src option
will only overwrite the source code and not re-install dependencies.

Note: If you are using Docker Desktop (which is usually the case if you are on Windows or MacOS) and want to setup
a test environment, you should use http://host.docker.interal for the server address in the node configuration
file. You should not use http://localhost in that case as that points to the localhost within the docker container
instead of the system-wide localhost.

Pull Request

Please consider first which branch you want to merge your contribution into. Patches are usually directly merged into
main, but features are usually merged into a release branch (e.g. release/4.1 for version 4.1.0) before being merged
into the main branch.

Before the PR is merged, it should pass the following requirements:

• At least one approved review of a code owner

• All unit tests should complete

• CodeQL (vulnerability scanning) should pass

• Codacy - Code quality checks - should be OK

• Coveralls - Code coverage analysis - should not decrease

Documentation

Depending on the changes you made, you may need to add a little (or a lot) of documentation. For more information
on how and where to edit the documentation, see the section Documentation.

Consider which documentation you need to update:

• User documentation. Update it if your change led to a different expierence for the end-user

• Technical documentation. Update it if you added new functionality. Check if your function docstrings have
also been added (see last bullet below).

• OAS (Open API Specification). If you changed input/output for any of the API endpoints, make sure to add it
to the docstrings. See API Documenation with OAS3+ for more details.

• Function docstrings These should always be documented using the numpy format. Such docstrings can then be
used to automatically generate parts of the technical documentation space.

4.9. Developer community 105

https://github.com/vantage6/vantage6
https://github.com/vantage6/vantage6
https://github.com/vantage6/vantage6/actions/workflows/unit_tests.yml
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
https://app.codacy.com/gh/vantage6/vantage6/dashboard
https://coveralls.io/github/vantage6/vantage6
https://numpydoc.readthedocs.io/en/latest/format.html


vantage6

4.9.1.6 Roles in the vantage6 community

As an open-source community, vantage6 is open to constructive development efforts from anyone. Developers that
contribute regularly may at some point become official members and as such can get more permissions. This section
outlines the rules that we follow as a community to govern this process.

Community access tiers

A few levels of access are discerned within the vantage6 community:

• Contributors: people that have opened pull requests which have been merged

• Members: members of the vantage6 Github organization

• Administrators: administrators of the vantage6 Github organization

Contributor access is available to anyone that wants to contribute to vantage6. They can create their own forks of the
vantage6 repository and create pull requests from there.

Membership gives developers more extensive access, for instance to create branches within the official repository and
view private repositories within the vantage6 Github organization. Membership may be given to anyone that requests
it and will be granted if the majority of the vantage6 members approves of this. There are no hard requirements
for membership: usually, making several contributions helps in receiving membership, but someone may also attain
membership if they are, for instance, an employee of a trusted organization that plans to invest in vantage6.

Administrator level access gives developers access to merge pull requests into the main branch and execute other sen-
sitive actions within the repositories. This level of access will only be granted to a small number of developers that
have demonstrated their knowledge of vantage6 extensively. Administrator access will only be given if all administra-
tors agree unanimously that it should be granted. In rare cases, administrator access may also be revoked if the other
administrators unanimously agree that it should be revoked.

Voting for membership and administrator access may be done in the community meetings, but can also be done asyn-
chronously via email.

4.9.2 Documentation

The vantage6 framework is documented on this website. Additionally, there is API Documenation with OAS3+. This
documentation is shipped directly with the server instance. All of these documentation pages are described in more
detail below.

4.9.2.1 How this documentation is created

The source of the documentation you are currently reading is located here, in the docs folder of the vantage6 repository
itself.

To build the documentation locally, there are two options. To build a static version, you can do make html when you
are in the docs directory. If you want to automatically refresh the documentation whenever you make a change, you
can use sphinx-autobuild. Assuming you are in the main directory of the repository, run the following commands:

pip install -r docs/requirements.txt
sphinx-autobuild docs docs/_build/html --watch .

Of course, you only have to install the requirements if you had not done so before.

106 Chapter 4. Index

https://github.com/vantage6/vantage6/tree/main/docs/
https://pypi.org/project/sphinx-autobuild/


vantage6

Note: This documentation also includes some UML diagrams which are generated using PlantUML. To generate
these diagrams, you need to install Java. PlantUML itself is included in the Python requirements, so you do not have
to install it separately.

Then you can access the documentation on http://127.0.0.1:8000. The --watch option makes sure that if you
make changes to either the documentation text or the docstrings, the documentation pages will also be reloaded.

This documentation is automatically built and published on a commit (on certain branches, including main). Both Frank
and Bart have access to the vantage6 project when logged into readthedocs. Here they can manage which branches are
to be synced, manage the webhook used to trigger a build, and some other -less important- settings.

The files in this documentation use the rst format, to see the syntax view this cheatsheet.

4.9.2.2 API Documenation with OAS3+

The API documentation is hosted at the server at the /apidocs endpoint. This documentation is generated from the
docstrings using Flasgger. The source of this documentation can be found in the docstrings of the API functions.

If you are unfamiliar with OAS3+, note that it was formerly known as Swagger.

An example of such a docsting:

"""Summary of the endpoint
---
description: >-

Short description on what the endpoint does, and which users have
access or which permissions are required.

parameters:
- in: path
name: id
schema:
type: integer

description: some identifier
required: true

responses:
200:

description: Ok
401:

description: Unauthorized or missing permission

security:
- bearerAuth: []

tags: ["Group"]
"""

4.9. Developer community 107

https://plantuml.com/
https://www.java.com/en/download/help/download_options.html
https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst
https://github.com/flasgger/flasgger


vantage6

4.9.3 Release

This page is intended to provide information about our release process. First, we discuss the version formatting, after
which we discuss the actual creation and distribution of a release.

4.9.3.1 Version format

Semantic versioning is used: Major.Minor.Patch.Pre[N].Post<n>.

Major releases update the first digit, e.g. 1.2.3 is updated to 2.0.0. This is used for releasing breaking changes: server
and nodes of version 2.x.y are unlikely to be able to run an algorithm written for version 1.x.y. Also, the responses of
the central server API may change in a way that changes the response to client requests.

Minor releases update the second digit, e.g. 1.2.3 to 1.3.0. This is used for releasing new features (e.g. a new
endpoint), enhancements and other changes that are compatible with all other components. Algorithms written for
version``1.x.y`` should run on any server of version 1.z.a. Also, the central server API should be compatible with
other minor versions - the same fields present before will be present in the new version, although new fields may be
added. However, nodes and servers of different minor versions may not be able to communicate properly.

Patch releases update the third digit, e.g. 1.2.3 to 1.2.4. This is used for bugfixes and other minor changes. Different
patch releases should be compatible with each other, so a node of version 1.2.3 should be able to communicate with
a server of version 1.2.4.

Pre[N] is used for alpha (a), beta (b) and release candidates (rc) releases and the build number is appended (e.g. 2.
0.1b1 indicates the first beta-build of version 2.0.1). These releases are used for testing before the actual release is
made.

Post[N] is used for a rebuild where no code changes have been made, but where, for example, a dependency has been
updated and a rebuild is required. In vantage6, this is only used to version the Docker images that are updated in these
cases.

4.9.3.2 Testing a release

Before a release is made, it is tested by the development team. They go through the following steps to test a release:

1. Create a release candidate. This process is the same as creating the actual release, except that the candidate
has a ‘pre’ tag (e.g. 1.2.3rc1 for release candidate number 1 of version 1.2.3). Note that for an RC release, no
notifications are sent to Discord.

2. Install the release. The release should be tested from a clean conda environment.

conda create -n <name> python=3.10
conda activate <name>
pip install vantage6==<version>

3. Start server and node. Start the server and node for the release candidate:

v6 server start --name <server name>
--image harbor2.vantage6.ai/infrastructure/server:<version>
--attach

v6 node start --name <node name>
--image harbor2.vantage6.ai/infrastructure/node:<version>
--attach

4. Test code changes. Go through all issues that are part of the new release and test their functionality.

108 Chapter 4. Index

https://semver.org/


vantage6

5. Run test algorithms. The algorithm v6-feature-tester is run and checked. This algorithm checks several features
to see if they are performing as expected. Additionaly, the v6-node-to-node-diagnostics algorithm is run to check
the VPN functionality.

6. Check swagger. Check if the swagger docs run without error. They should be on http://localhost:5000/apidocs/
when running server locally.

7. Test the UI. Also make a release candidate there.

After these steps, the release is ready. It is executed for both the main infrastructure and the UI. The release process is
described below.

Note: We are working on further automating the testing and release process.

4.9.3.3 Create a release

To create a new release, one should go through the following steps:

• Check out the correct branch of the vantage6 repository and pull the latest version:

git checkout main
git pull

Make sure the branch is up-to-date. Patches are usually directly merged into main, but for minor or major
releases you usually need to execute a pull request from a development branch.

• Create a tag for the release. See Version format for more details on version names:

git tag version/x.y.z

• Push the tag to the remote. This will trigger the release pipeline on Github:

git push origin version/x.y.z

Note: The release process is protected and can only be executed by certain people. Reach out if you have any questions
regarding this.

4.9.3.4 The release pipeline

The release pipeline executes the following steps:

1. It checks if the tag contains a valid version specification. If it does not, the process it stopped.

2. Update the version in the repository code to the version specified in the tag and commit this back to the main
branch.

3. Install the dependencies and build the Python package.

4. Upload the package to PyPi.

5. Build and push the Docker image to harbor2.vantage6.ai.

6. Post a message in Discord to alert the community of the new release. This is not done if the version is a pre-release
(e.g. version/x.y.0rc1).

4.9. Developer community 109

http://localhost:5000/apidocs/
https://github.com/vantage6/vantage6
https://harbor2.vantage6.ai


vantage6

Note: If you specify a tag with a version that already exists, the build pipeline will fail as the upload to PyPi is rejected.

The release pipeline uses a number of environment variables to, for instance, authenticate to PyPi and Discord. These
variables are listed and explained in the table below.

Table 4.4: Environment variables
Secret Description
COMMIT_PAT Github Personal Access Token with commit privileges. This is linked to an in-

dividual user with admin right as the commit on the main needs to bypass the
protections. There is unfortunately not -yet- a good solution for this.

ADD_TO_PROJECT_PAT Github Personal Access Token with project management privileges. This token
is used to add new issues to project boards.

COVERALLS_TOKEN Token from coveralls to post the test coverage stats.
DOCKER_TOKEN Token used together DOCKER_USERNAME to upload the container images to our

https://harbor2.vantage6.ai.
DOCKER_USERNAME See DOCKER_TOKEN.
PYPI_TOKEN Token used to upload the Python packages to PyPi.
DISCORD_RELEASE_TOKEN Token to post a message to the Discord community when a new release is pub-

lished.

4.9.3.5 Distribute release

Nodes and servers that are already running will automatically be upgraded to the latest version of their major release
when they are restarted. This happens by pulling the newly released docker image. Note that the major release is never
automatically updated: for example, a node running version 2.1.0 will update to 2.1.1 or 2.2.0, but never to 3.0.0.
Depending on the version of Vantage6 that is being used, there is a reserved Docker image tag for distributing the
upgrades. These are the following:

Tag Description
cotopaxi 4.x.x release
petronas 3.x.x release
harukas 2.x.x release
troltunga 1.x.x release

Docker images can be pulled manually with e.g.

docker pull harbor2.vantage6.ai/infrastructure/server:cotopaxi
docker pull harbor2.vantage6.ai/infrastructure/node:3.1.0

4.9.3.6 User Interface release

The release process for the user interface (UI) is very similar to the release of the infrastructure detailed above. The
same versioning format is used, and when you push a version tag, the automated release process is triggered.

We have semi-synchronized the version of the UI with that of the infrastructure. That is, we try to release major and
minor versions at the same time. For example, if we are currently at version 3.5 and release version 3.6, we release it
both for the infrastructure and for the UI. However, there may be different patch versions for both: the latest version for
the infrastructure may then be 3.6.2 while the UI may still be at 3.6.

The release pipeline for the UI executes the following steps:

110 Chapter 4. Index

https://harbor2.vantage6.ai


vantage6

1. Version tag is verified (same as infrastructure).

2. Version is updated in the code (same as infrastructure).

3. Application is built.

4. Docker images are built and released to harbor2.

5. Application is pushed to our UI deployment slot (an Azure app service).

4.9.3.7 Post-release checks

After a release, there are a few checks that are performed. Most of these are only relevant if you are hosting a server
yourself that is being automatically updated upon new releases, as is for instance the case for the Cotopaxi server.

For Cotopaxi, the following checks are done:

• Check that harbor2.vantage6.ai has updated images server:cotopaxi, server:cotopaxi-live and
node:cotopaxi.

• Check if the (live) server version is updated. Go to: https://cotopaxi.vantage6.ai/version. Check logs if it is not
updated.

• Release any documentation that may not yet have been released.

• Upgrade issue status to ‘Done’ in any relevant issue tracker.

• Check if nodes are online, and restart them to update to the latest version if desired.

4.10 Function documentation

This part of the documentation documents the code of the vantage6 infrastructure. It lists all the functions and classes
and describes what they do and how they may be used. It is ordered by package: each of the subsections below represents
a distinct PyPi package.

4.10.1 Node

A node in its simplest would retrieve a task from the central server by an API call, run this task and finally return the
results to the central server again.

The node application runs four threads:

Main thread
Checks the task queue and run the next task if there is one available.

Listening thread
Listens for incoming websocket messages. Among other functionality, it adds new tasks to the task queue.

Speaking thread
Waits for tasks to finish. When they do, return the results to the central server.

Proxy server thread
Algorithm containers are isolated from the internet for security reasons. The local proxy server provides an
interface to the central server for algorithm containers to create subtasks and retrieve their results.

The node connects to the server using a websocket connection. This connection is mainly used for sharing status
updates. This avoids the need for polling to see if there are new tasks available.

4.10. Function documentation 111

https://cotopaxi.vantage6.ai/version


vantage6

Below you will find the structure of the classes and functions that comprise the node. A few that we would like to
highlight:

• Node: the main class in a vantage6 node.

• NodeContext and DockerNodeContext: classes that handle the node configuration. The latter inherits from the
former and adds some properties for when the node runs in a docker container.

• DockerManager: Manages the docker containers and networks of the vantage6 node.

• DockerTaskManager: Start a docker container that runs an algorithm and manage its lifecycle.

• VPNManager: Sets up the VPN connection (if it is configured) and manages it.

• vnode-local commands: commands to run non-dockerized (development) instances of your nodes.

4.10.1.1 vantage6.node.Node

class Node(ctx)
Authenticates to the central server, setup encryption, a websocket connection, retrieving task that were posted
while offline, preparing dataset for usage and finally setup a local proxy server..

Parameters
ctx (NodeContext | DockerNodeContext) – Application context object.

__listening_worker()

Listen for incoming (websocket) messages from the server.

Runs in a separate thread. Received events are handled by the appropriate action handler.

Return type
None

__proxy_server_worker()

Proxy algorithm container communcation.

A proxy for communication between algorithms and central server.

Return type
None

__speaking_worker()

Sending messages to central server.

Routine that is in a seperate thread sending results to the server when they come available.

Return type
None

__start_task(task_incl_run)
Start the docker image and notify the server that the task has been started.

Parameters
task_incl_run (dict) – A dictionary with information required to run the algorithm

Return type
None

112 Chapter 4. Index



vantage6

authenticate()

Authenticate with the server using the api-key from the configuration file. If the server rejects for any reason
-other than a wrong API key- serveral attempts are taken to retry.

Return type
None

connect_to_socket()

Create long-lasting websocket connection with the server. The connection is used to receive status updates,
such as new tasks.

Return type
None

get_task_and_add_to_queue(task_id)
Fetches (open) task with task_id from the server. The task_id is delivered by the websocket-connection.

Parameters
task_id (int) – Task identifier

Return type
None

initialize()

Initialization of the node

Return type
None

kill_containers(kill_info)
Kill containers on instruction from socket event

Parameters
kill_info (dict) – Dictionary received over websocket with instructions for which tasks
to kill

Returns
List of dictionaries with information on killed task (keys: run_id, task_id and parent_id)

Return type
list[dict]

private_key_filename()

Get the path to the private key.

Return type
Path

run_forever()

Keep checking queue for incoming tasks (and execute them).

Return type
None

setup_encryption()

Setup encryption if the node is part of encrypted collaboration

Return type
None

4.10. Function documentation 113



vantage6

setup_squid_proxy(isolated_network_mgr)
Initiates a Squid proxy if configured in the config.yml

Expects the configuration in the following format:

whitelist:
domains:

- domain1
- domain2

ips:
- ip1
- ip2

ports:
- port1
- port2

Parameters
isolated_network_mgr (NetworkManager) – Network manager for isolated network

Returns
Squid proxy instance

Return type
Squid

setup_ssh_tunnels(isolated_network_mgr)
Create a SSH tunnels when they are defined in the configuration file. For each tunnel a new container is
created. The image used can be specified in the configuration file as ssh-tunnel in the images section, else
the default image is used.

Parameters
isolated_network_mgr (NetworkManager) – Manager for the isolated network

Return type
list[SSHTunnel]

setup_vpn_connection(isolated_network_mgr, ctx)
Setup container which has a VPN connection

Parameters

• isolated_network_mgr (NetworkManager) – Manager for the isolated Docker network

• ctx (DockerNodeContext | NodeContext) – Context object for the node

Returns
Manages the VPN connection

Return type
VPNManager

share_node_details()

Share part of the node’s configuration with the server.

This helps the other parties in a collaboration to see e.g. which algorithms they are allowed to run on this
node.

Return type
None

114 Chapter 4. Index



vantage6

sync_task_queue_with_server()

Get all unprocessed tasks from the server for this node.

Return type
None

class DockerNodeContext(*args, **kwargs)
Node context for the dockerized version of the node.

static instance_folders(instance_type, instance_name, system_folders)
Log, data and config folders are always mounted. The node manager should take care of this.

set_folders(instance_type, instance_name, system_folders)
In case of the dockerized version we do not want to use user specified directories within the container.

4.10.1.2 vantage6.node.docker.docker_base

class DockerBaseManager(isolated_network_mgr, docker_client=None)
Base class for docker-using classes. Contains simple methods that are used by multiple derived classes

get_isolated_netw_ip(container)
Get address of a container in the isolated network

Parameters
container (Container) – Docker container whose IP address should be obtained

Returns
IP address of a container in isolated network

Return type
str

4.10.1.3 vantage6.node.docker.docker_manager

class DockerManager(ctx, isolated_network_mgr, vpn_manager, tasks_dir, client, proxy=None)
Bases: DockerBaseManager

Wrapper for the docker-py module.

This class manages tasks related to Docker, such as logging in to docker registries, managing input/output files,
logs etc. Results can be retrieved through get_result() which returns the first available algorithm result.

cleanup()

Stop all active tasks and delete the isolated network

Note: the temporary docker volumes are kept as they may still be used by a parent container

Return type
None

cleanup_tasks()

Stop all active tasks

Returns
List of information on tasks that have been killed

Return type
list[KilledRun]

4.10. Function documentation 115



vantage6

create_volume(volume_name)
Create a temporary volume for a single run.

A single run can consist of multiple algorithm containers. It is important to note that all algorithm containers
having the same job_id have access to this container.

Parameters
volume_name (str) – Name of the volume to be created

Return type
None

get_column_names(label, type_)
Get column names from a node database

Parameters

• label (str) – Label of the database

• type (str) – Type of the database

Returns
List of column names

Return type
list[str]

get_result()

Returns the oldest (FIFO) finished docker container.

This is a blocking method until a finished container shows up. Once the container is obtained and the results
are read, the container is removed from the docker environment.

Returns
result of the docker image

Return type
Result

is_docker_image_allowed(docker_image_name, task_info)
Checks the docker image name.

Against a list of regular expressions as defined in the configuration file. If no expressions are defined, all
docker images are accepted.

Parameters

• docker_image_name (str) – uri to the docker image

• task_info (dict) – Dictionary with information about the task

Returns
Whether docker image is allowed or not

Return type
bool

is_running(run_id)
Check if a container is already running for <run_id>.

Parameters
run_id (int) – run_id of the algorithm container to be found

116 Chapter 4. Index



vantage6

Returns
Whether or not algorithm container is running already

Return type
bool

kill_selected_tasks(org_id, kill_list=None)
Kill tasks specified by a kill list, if they are currently running on this node

Parameters

• org_id (int) – The organization id of this node

• kill_list (list[ToBeKilled]) – A list of info about tasks that should be killed.

Returns
List with information on killed tasks

Return type
list[KilledRun]

kill_tasks(org_id, kill_list=None)
Kill tasks currently running on this node.

Parameters

• org_id (int) – The organization id of this node

• kill_list (list[ToBeKilled] (optional)) – A list of info on tasks that should be
killed. If the list is not specified, all running algorithm containers will be killed.

Returns
List of dictionaries with information on killed tasks

Return type
list[KilledRun]

link_container_to_network(container_name, config_alias)
Link a docker container to the isolated docker network

Parameters

• container_name (str) – Name of the docker container to be linked to the network

• config_alias (str) – Alias of the docker container defined in the config file

Return type
None

login_to_registries(registries=[])
Login to the docker registries

Parameters
registries (list) – list of registries to login to

Return type
None

run(run_id, task_info, image, docker_input, tmp_vol_name, token, databases_to_use)
Checks if docker task is running. If not, creates DockerTaskManager to run the task

Parameters

• run_id (int) – Server run identifier

4.10. Function documentation 117



vantage6

• task_info (dict) – Dictionary with task information

• image (str) – Docker image name

• docker_input (bytes) – Input that can be read by docker container

• tmp_vol_name (str) – Name of temporary docker volume assigned to the algorithm

• token (str) – Bearer token that the container can use

• databases_to_use (list[str]) – Labels of the databases to use

Returns
Returns a tuple with the status of the task and a description of each port on the VPN client
that forwards traffic to the algorithm container (None if VPN is not set up).

Return type
TaskStatus, list[dict] | None

class Result(run_id: int, task_id: int, logs: str, data: str, status: str, parent_id: int | None)
Data class to store the result of the docker image.

Variables

• run_id (int) – ID of the current algorithm run

• logs (str) – Logs attached to current algorithm run

• data (str) – Output data of the algorithm

• status_code (int) – Status code of the algorithm run

4.10.1.4 vantage6.node.docker.task_manager

class DockerTaskManager(image, docker_client, vpn_manager, node_name, run_id, task_info, tasks_dir,
isolated_network_mgr, databases, docker_volume_name, alpine_image=None,
proxy=None, device_requests=None)

Bases: DockerBaseManager

Manager for running a vantage6 algorithm container within docker.

Ensures that the environment is properly set up (docker volumes, directories, environment variables, etc). Then
runs the algorithm as a docker container. Finally, it monitors the container state and can return it’s results when
the algorithm finished.

cleanup()

Cleanup the containers generated for this task

Return type
None

get_results()

Read results output file of the algorithm container

Returns
Results of the algorithm container

Return type
bytes

118 Chapter 4. Index



vantage6

is_finished()

Checks if algorithm container is finished

Returns
True if algorithm container is finished

Return type
bool

pull(local_exists)
Pull the latest docker image.

Parameters
local_exists (bool) – Whether the image already exists locally

Raises
PermanentAlgorithmStartFail – If the image could not be pulled and does not exist
locally

Return type
None

report_status()

Checks if algorithm has exited successfully. If not, it prints an error message

Returns
logs – Log messages of the algorithm container

Return type
str

run(docker_input, tmp_vol_name, token, algorithm_env, databases_to_use)
Runs the docker-image in detached mode.

It will will attach all mounts (input, output and datafile) to the docker image. And will supply some envi-
ronment variables.

Parameters

• docker_input (bytes) – Input that can be read by docker container

• tmp_vol_name (str) – Name of temporary docker volume assigned to the algorithm

• token (str) – Bearer token that the container can use

• algorithm_env (dict) – Dictionary with additional environment variables to set

• databases_to_use (list[str]) – List of labels of databases to use in the task

Returns
Description of each port on the VPN client that forwards traffic to the algo container. None
if VPN is not set up.

Return type
list[dict] | None

4.10. Function documentation 119



vantage6

4.10.1.5 vantage6.node.docker.vpn_manager

class VPNManager(isolated_network_mgr, node_name, node_client, vpn_volume_name, vpn_subnet,
alpine_image=None, vpn_client_image=None, network_config_image=None)

Bases: DockerBaseManager

Setup a VPN client in a Docker container and configure the network so that the VPN container can forward traffic
to and from algorithm containers.

connect_vpn()

Start VPN client container and configure network to allow algorithm-to-algoritm communication

Return type
None

exit_vpn(cleanup_host_rules=True)
Gracefully shutdown the VPN and clean up

Parameters
cleanup_host_rules (bool, optional) – Whether or not to clear host configuration
rules. Should be True if they have been created at the time this function runs.

Return type
None

forward_vpn_traffic(helper_container, algo_image_name)
Setup rules so that traffic is properly forwarded between the VPN container and the algorithm container
(and its helper container)

Parameters

• algo_helper_container (Container) – Helper algorithm container

• algo_image_name (str) – Name of algorithm image that is run

Returns
Description of each port on the VPN client that forwards traffic to the algo container. None
if VPN is not set up.

Return type
list[dict] | None

get_vpn_ip()

Get VPN IP address in VPN server namespace

Returns
IP address assigned to VPN client container by VPN server

Return type
str

has_connection()

Return True if VPN connection is active

Returns
True if VPN connection is active, False otherwise

Return type
bool

120 Chapter 4. Index



vantage6

static is_isolated_interface(ip_interface, vpn_ip_isolated_netw)
Return True if a network interface is the isolated network interface. Identify this based on the IP address
of the VPN client in the isolated network

Parameters

• ip_interface (dict) – IP interface obtained by executing ip –json addr command

• vpn_ip_isolated_netw (str) – IP address of VPN container in isolated network

Returns
True if this is the interface describing the isolated network

Return type
bool

send_vpn_ip_to_server()

Send VPN IP address to the server

Return type
None

4.10.1.6 vantage6.node.docker.exceptions

Below are some custom exception types that are raised when algorithms cannot be executed successfully.

exception AlgorithmContainerNotFound

Algorithm container was lost. Potentially running it again would resolve the issue.

exception PermanentAlgorithmStartFail

Algorithm failed to start and should not be attempted to be started again.

exception UnknownAlgorithmStartFail

Algorithm failed to start due to an unknown reason. Potentially running it again would resolve the issue.

4.10.1.7 vantage6.node.proxy_server

This module contains a proxy server implementation that the node uses to communicate with the server. It contains
general methods for any routes, and methods to handle tasks and results, including their encryption and decryption.

(!) Not to be confused with the squid proxy that allows algorithm containers to access other places in the network.

decrypt_result(run)
Decrypt the result from a run dictonary

Parameters
run (dict) – Run dict

Returns
Run dict with the result decrypted

Return type
dict

get_method(method)
Obtain http method based on string identifier

Parameters
method (str) – Http method requested

4.10. Function documentation 121



vantage6

Returns
HTTP method

Return type
function

get_response_json_and_handle_exceptions(response)
Obtain json content from request response

Parameters
response (requests.Response) – Requests response object

Returns
Dict containing the json body

Return type
dict | None

make_proxied_request(endpoint)
Helper to create proxies requests to the central server.

Parameters
endpoint (str) – endpoint to be reached at the vantage6 server

Returns
Response from the vantage6 server

Return type
requests.Response

make_request(method, endpoint, json=None, params=None, headers=None)
Make request to the central server

Parameters

• method (str) – HTTP method to be used

• endpoint (str) – endpoint of the vantage6 server

• json (dict, optional) – JSON body

• params (dict, optional) – HTTP parameters

• headers (dict, optional) – HTTP headers

Returns
Response from the vantage6 server

Return type
requests.Response

proxy(central_server_path)
Generalized http proxy request

Parameters
central_server_path (str) – The endpoint on the server to be reached

Returns
Contains the server response

Return type
requests.Response

122 Chapter 4. Index



vantage6

proxy_result()

Obtain and decrypt all results to belong to a certain task

Parameters
id (int) – Task id from which the results need to be obtained

Returns
Reponse from the vantage6 server

Return type
requests.Response

proxy_results(id_)
Obtain and decrypt the algorithm result from the vantage6 server to be used by an algorithm container.

Parameters
id (int) – Id of the result to be obtained

Returns
Response of the vantage6 server

Return type
requests.Response

proxy_task()

Proxy to create tasks at the vantage6 server

Returns
Response from the vantage6 server

Return type
requests.Response

4.10.1.8 vantage6.node.cli.node

This contains the vnode-local commands. These commands are similar to the v6 node CLI commands, but they
start up the node outside of a Docker container, and are mostly intended for development purposes.

Some commands, such as vnode-local start, are used within the Docker container when v6 node start is used.

vnode-local

Command vnode-local.

vnode-local [OPTIONS] COMMAND [ARGS]...

files

Print out the paths of important files.

If the specified configuration cannot be found, it exits. Otherwise it returns the absolute path to the output.

vnode-local files [OPTIONS]

4.10. Function documentation 123



vantage6

Options

-n, --name <name>

Configuration name

--system

Use configuration from system folders (default)

--user

Use configuration from user folders

list

Lists all nodes in the default configuration directories.

vnode-local list [OPTIONS]

new

Create a new configation file.

Checks if the configuration already exists. If this is not the case a questionaire is invoked to create a new configuration
file.

vnode-local new [OPTIONS]

Options

-n, --name <name>

Configuration name

--system

Use configuration from system folders (default)

--user

Use configuration from user folders

start

Start the node instance.

If no name or config is specified the default.yaml configuation is used. In case the configuration file not exists, a
questionaire is invoked to create one.

vnode-local start [OPTIONS]

124 Chapter 4. Index



vantage6

Options

-n, --name <name>

Configuration name

-c, --config <config>

Absolute path to configuration-file; overrides “name”

--system

Use configuration from system folders (default)

--user

Use configuration from user folders

--dockerized, -non-dockerized

Whether to use DockerNodeContext or regular NodeContext (default)

version

Returns current version of vantage6 services installed.

vnode-local version [OPTIONS]

4.10.2 Server

4.10.2.1 Main server class

vantage6.server.ServerApp

4.10.2.2 Starting the server

vantage6.server.run_server

Warning: Note that the run_server function is normally not used directly to start the server, but is used as utility
function in places that start the server. The recommended way to start a server is using uWSGI as is done in v6
server start.

vantage6.server.run_dev_server

4.10.2.3 Permission management

vantage6.server.model.rule.Scope

vantage6.server.model.rule.Operation

vantage6.server.model.permission.RuleCollection

4.10. Function documentation 125



vantage6

vantage6.server.permission.PermissionManager

4.10.2.4 Socket functionality

vantage6.server.websockets.DefaultSocketNamespace

4.10.2.5 API endpoints

Warning: The API endpoints are also documented on the /apidocs endpoint of the server (e.g. https://
cotopaxi.vantage6.ai/apidocs). That documentation requires a different format than the one used to create
this documentation. We are therefore not including the API documentation here. Instead, we merely list the sup-
porting functions and classes.

vantage6.server.resource

vantage6.server.resource.common.output_schema

vantage6.server.resource.common.auth_helper

vantage6.server.resource.common.swagger_template

This module contains the template for the OAS3 documentation of the API.

4.10.2.6 SQLAlchemy models

vantage6.server.model.base

This module contains a few base classes that are used by the other models.

Database models for the API resources

vantage6.server.model.algorithm_port.AlgorithmPort

vantage6.server.model.authenticatable.Authenticatable

vantage6.server.model.collaboration.Collaboration

vantage6.server.model.node.Node

vantage6.server.model.organization.Organization

vantage6.server.model.run.Run

vantage6.server.model.role.Role

126 Chapter 4. Index



vantage6

vantage6.server.model.rule.Rule

vantage6.server.model.task.Task

vantage6.server.model.user.User

Database models that link resources together

vantage6.server.model.Member

vantage6.server.model.permission

vantage6.server.model.role_rule_association

4.10.2.7 Database utility functions

vantage6.server.db

4.10.2.8 Mail service

vantage6.server.mail_service

4.10.2.9 Default roles

vantage6.server.default_roles

4.10.2.10 Custom server exceptions

vantage6.server.exceptions

4.10.3 Algorithm store

4.10.3.1 Main class of algorithm store

vantage6.algorithm.store

4.10.3.2 API endpoints

Warning: The API endpoints are documented on the /apidocs endpoint of the server (e.g. https://cotopaxi.
vantage6.ai/apidocs). That documentation requires a different format than the one used to create this docu-
mentation. We are therefore not including the API documentation here. Instead, we merely list the supporting
functions and classes.

vantage6.algorithm.store.resource

vantage6.algorithm.store.resource.schema.output_schema

4.10. Function documentation 127



vantage6

vantage6.algorithm.store.resource.schema.input_schema

4.10.3.3 SQLAlchemy models

vantage6.algorithm.store.model.base

This module contains a few base classes that are used by the other models.

Database models for the API resources

vantage6.algorithm.store.model.algorithm

vantage6.algorithm.store.model.argument

vantage6.algorithm.store.model.database

vantage6.algorithm.store.model.function

vantage6.algorithm.store.model.vantage6_server

4.10.4 Command line interface

This page contains the API reference of the functions in the vantage package. This package contains the Command-Line
Interface (CLI) of the Vantage6 framework.

4.10.4.1 Node CLI

vantage6.cli.node

v6 node

Manage your vantage6 node instances.

v6 node [OPTIONS] COMMAND [ARGS]...

cli-node-attach

Show the node logs in the current console.

v6 node cli-node-attach [OPTIONS]

128 Chapter 4. Index



vantage6

Options

-n, --name <name>

Configuration name

--system

Search for configuration in system folders rather than user folders

--user

Search for configuration in user folders rather than system folders. This is the default

cli-node-clean

Erase temporary Docker volumes.

v6 node cli-node-clean [OPTIONS]

cli-node-create-private-key

Create and upload a new private key

Use this command with caution! Uploading a new key has several consequences, e.g. you and other users of your
organization will no longer be able to read the results of tasks encrypted with current key.

v6 node cli-node-create-private-key [OPTIONS]

Options

-n, --name <name>

Configuration name

-c, --config <config>

Absolute path to configuration-file; overrides NAME

--system

Search for configuration in system folders rather than user folders

--user

Search for configuration in user folders rather than system folders. This is the default

--no-upload

Don’t upload the public key to the server

-o, --organization-name <organization_name>

Organization name. Used in the filename of the private key so that it can easily be recognized again later

--overwrite

Overwrite existing private key if present

4.10. Function documentation 129



vantage6

cli-node-files

Prints the location of important node files.

If the specified configuration cannot be found, it exits. Otherwise it returns the absolute path to the output.

v6 node cli-node-files [OPTIONS]

Options

-n, --name <name>

Configuration name

--system

Search for the configuration in the system folders

--user

Search for the configuration in the user folders. This is the default

cli-node-list

Lists all node configurations.

Note that this command cannot find node configuration files in custom directories.

v6 node cli-node-list [OPTIONS]

cli-node-new-configuration

Create a new node configuration.

Checks if the configuration already exists. If this is not the case a questionnaire is invoked to create a new configuration
file.

v6 node cli-node-new-configuration [OPTIONS]

Options

-n, --name <name>

Configuration name

--system

Store this configuration in the system folders

--user

Store this configuration in the user folders. This is the default

130 Chapter 4. Index



vantage6

cli-node-remove

Delete a node permanently.

Remove the configuration file, log file, and docker volumes attached to the node.

v6 node cli-node-remove [OPTIONS]

Options

-n, --name <name>

Configuration name

--system

Search for configuration in system folders rather than user folders

--user

Search for configuration in user folders rather than system folders. This is the default

-f, --force

Don’t ask for confirmation

cli-node-set-api-key

Put a new API key into the node configuration file

v6 node cli-node-set-api-key [OPTIONS]

Options

-n, --name <name>

Configuration name

--api-key <api_key>

New API key

--system

Search for configuration in system folders rather than user folders

--user

Search for configuration in user folders rather than system folders. This is the default

cli-node-start

Start the node.

v6 node cli-node-start [OPTIONS]

4.10. Function documentation 131



vantage6

Options

-i, --image <image>

Node Docker image to use

--keep, --auto-remove

Keep node container after finishing. Useful for debugging

--force-db-mount

Always mount node databases; skip the check if they are existing files.

--attach, --detach

Show node logs on the current console after starting the node

--mount-src <mount_src>

Override vantage6 source code in container with the source code in this path

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

cli-node-stop

Stop one or all running nodes.

v6 node cli-node-stop [OPTIONS]

Options

-n, --name <name>

Configuration name

--system

Search for configuration in system folders instead of user folders

--user

Search for configuration in the user folders instead of system folders. This is the default.

--all

Stop all running nodes

--force

Kill nodes instantly; don’t wait for them to shut down

132 Chapter 4. Index



vantage6

cli-node-version

Returns current version of a vantage6 node.

v6 node cli-node-version [OPTIONS]

Options

-n, --name <name>

Configuration name

--system

Search for configuration in system folders rather than user folders

--user

Search for configuration in user folders rather than system folders. This is the default

4.10.4.2 Server CLI

v6 server

Manage your vantage6 server instances.

v6 server [OPTIONS] COMMAND [ARGS]...

cli-server-attach

Show the server logs in the current console.

v6 server cli-server-attach [OPTIONS]

Options

-n, --name <name>

configuration name

--system

--user

4.10. Function documentation 133



vantage6

cli-server-configuration-list

Print the available server configurations.

v6 server cli-server-configuration-list [OPTIONS]

cli-server-files

List files that belong to a particular server instance.

v6 server cli-server-files [OPTIONS]

Options

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

cli-server-import

Import vantage6 resources into a server instance.

This allows you to create organizations, collaborations, users, tasks, etc from a yaml file.

The FILE_ argument should be a path to a yaml file containing the vantage6 formatted data to import.

v6 server cli-server-import [OPTIONS] FILE

Options

--drop-all

Drop all existing data before importing

-i, --image <image>

Node Docker image to use

--mount-src <mount_src>

Override vantage6 source code in container with the source code in this path

--keep, --auto-remove

Keep image after finishing. Useful for debugging

134 Chapter 4. Index



vantage6

--wait <wait>

Wait for the import to finish

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

Arguments

FILE

Required argument

cli-server-new

Create a new server configuration.

v6 server cli-server-new [OPTIONS]

Options

-n, --name <name>

name of the configuration you want to use.

--system

--user

cli-server-remove

Function to remove a server.

Parameters

ctx
[ServerContext] Server context object

force
[bool] Whether to ask for confirmation before removing or not

v6 server cli-server-remove [OPTIONS]

4.10. Function documentation 135



vantage6

Options

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

-f, --force

cli-server-shell

Run an iPython shell within a running server. This can be used to modify the database.

NOTE: using the shell is no longer recommended as there is no validation on the changes that you make. It is better to
use the Python client or a graphical user interface instead.

v6 server cli-server-shell [OPTIONS]

Options

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

cli-server-start

Start the server.

v6 server cli-server-start [OPTIONS]

136 Chapter 4. Index



vantage6

Options

--ip <ip>

IP address to listen on

-p, --port <port>

Port to listen on

-i, --image <image>

Server Docker image to use

--with-ui

Start the graphical User Interface as well

--ui-port <ui_port>

Port to listen on for the User Interface

--with-rabbitmq

Start RabbitMQ message broker as local container - use in development only

--rabbitmq-image <rabbitmq_image>

RabbitMQ docker image to use

--keep, --auto-remove

Keep image after server has stopped. Useful for debugging

--mount-src <mount_src>

Override vantage6 source code in container with the source code in this path

--attach, --detach

Print server logs to the console after start

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

cli-server-stop

Stop one or all running server(s).

v6 server cli-server-stop [OPTIONS]

4.10. Function documentation 137



vantage6

Options

-n, --name <name>

Configuration name

--system

--user

--all

Stop all servers

cli-server-version

Print the version of the vantage6 server.

v6 server cli-server-version [OPTIONS]

Options

-n, --name <name>

Configuration name

--system

--user

4.10.4.3 Algorithm store CLI

v6 algorithm-store

Manage your vantage6 algorithm store server instances.

v6 algorithm-store [OPTIONS] COMMAND [ARGS]...

cli-algo-store-attach

Show the server logs in the current console.

v6 algorithm-store cli-algo-store-attach [OPTIONS]

138 Chapter 4. Index



vantage6

Options

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

cli-algo-store-configuration-list

Print the available server configurations.

v6 algorithm-store cli-algo-store-configuration-list [OPTIONS]

cli-algo-store-files

List files that belong to a particular server instance.

v6 algorithm-store cli-algo-store-files [OPTIONS]

Options

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

cli-algo-store-new

Create a new server configuration.

v6 algorithm-store cli-algo-store-new [OPTIONS]

4.10. Function documentation 139



vantage6

Options

-n, --name <name>

name of the configuration you want to use.

--system

--user

cli-algo-store-start

Start the algorithm store server.

v6 algorithm-store cli-algo-store-start [OPTIONS]

Options

--ip <ip>

IP address to listen on

-p, --port <port>

Port to listen on

-i, --image <image>

Algorithm store Docker image to use

--keep, --auto-remove

Keep image after algorithm store has been stopped. Useful for debugging

--mount-src <mount_src>

Override vantage6 source code in container with the source code in this path

--attach, --detach

Print server logs to the console after start

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

140 Chapter 4. Index



vantage6

cli-algo-store-stop

Stop one or all running server(s).

v6 algorithm-store cli-algo-store-stop [OPTIONS]

Options

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

--all

Stop all servers

4.10.4.4 Local test setup CLI

v6 dev

Quickly manage a test network with a server and several nodes.

These commands are helpful for local testing of your vantage6 environment.

v6 dev [OPTIONS] COMMAND [ARGS]...

create-demo-network

Creates a demo network.

Creates server instance as well as its import configuration file. Server name is set to ‘dev_default_server’. Generates n
node configurations, but by default this is set to 3. Then runs a Batch import of organizations/collaborations/users and
tasks.

v6 dev create-demo-network [OPTIONS]

4.10. Function documentation 141



vantage6

Options

-n, --name <name>

Name for your development setup

--num-nodes <num_nodes>

Generate this number of nodes in the development network

--server-url <server_url>

Server URL to point to. If you are using Docker Desktop, the default http://host.docker.internal should not be
changed.

-p, --server-port <server_port>

Port to run the server on. Default is 5000.

-i, --image <image>

Server docker image to use when setting up resources for the development server

--extra-server-config <extra_server_config>

YAML File with additional server configuration. This will be appended to the server configuration file

--extra-node-config <extra_node_config>

YAML File with additional node configuration. This will be appended to each of the node configuration files

remove-demo-network

Remove all related demo network files and folders.

Select a server configuration to remove that server and the nodes attached to it.

v6 dev remove-demo-network [OPTIONS]

Options

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

142 Chapter 4. Index

http://host.docker.internal


vantage6

start-demo-network

Starts running a demo-network.

Select a server configuration to run its demo network. You should choose a server configuration that you created earlier
for a demo network. If you have not created a demo network, you can run vdev create-demo-network to create one.

v6 dev start-demo-network [OPTIONS]

Options

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

--server-image <server_image>

Server Docker image to use

--node-image <node_image>

Node Docker image to use

stop-demo-network

Stops a demo network’s server and nodes.

Select a server configuration to stop that server and the nodes attached to it.

v6 dev stop-demo-network [OPTIONS]

Options

-n, --name <name>

Name of the configuration.

-c, --config <config>

Path to configuration-file; overrides –name

--system

Use system folders instead of user folders. This is the default

--user

Use user folders instead of system folders

4.10. Function documentation 143



vantage6

4.10.4.5 Run test algorithms CLI

v6 test

Execute tests on your vantage6 infrastructure.

v6 test [OPTIONS] COMMAND [ARGS]...

cli-test-features

Run diagnostic checks on an existing vantage6 network.

This command will create a task in the requested collaboration that will test the functionality of vantage6, and will
report back the results.

v6 test cli-test-features [OPTIONS]

Options

--host <host>

URL of the server

--port <port>

Port of the server

--api-path <api_path>

API path of the server

--username <username>

Username of vantage6 user account to create the task with

--password <password>

Password of vantage6 user account to create the task with

--collaboration <collaboration>

ID of the collaboration to create the task in

-o, --organizations <organizations>

ID(s) of the organization(s) to create the task for

--all-nodes

Run the diagnostic test on all nodes in the collaboration

--online-only

Run the diagnostic test on only nodes that are online

--no-vpn

Don’t execute VPN tests

--private-key <private_key>

Path to the private key for end-to-end encryption

144 Chapter 4. Index



vantage6

cli-test-integration

Create dev network and run diagnostic checks on it.

This is a full integration test of the vantage6 network. It will create a test server with some nodes using the vdev
commands, and then run the v6-diagnostics algorithm to test all functionality.

v6 test cli-test-integration [OPTIONS]

Options

-n, --name <name>

Name for your development setup

--server-url <server_url>

Server URL to point to. If you are using Docker Desktop, the default http://host.docker.internal should not be
changed.

-i, --image <image>

Server Docker image to use

--keep <keep>

Keep the dev network after finishing the test

--extra-server-config <extra_server_config>

YAML File with additional server configuration. This will be appended to the server configuration file

--extra-node-config <extra_node_config>

YAML File with additional node configuration. This will be appended to each of the node configuration files

4.10.4.6 vantage6.cli.context

The context module in the CLI package contains the Context classes of instances started from the CLI, such as nodes
and servers. These contexts are related to the host system and therefore part of the CLI package.

All classes are derived from the abstract AppContext class and provide the vantage6 applications with naming conven-
tions, standard file locations, and more.

get_context(type_, name, system_folders)
Load the server context from the configuration file.

Parameters

• type (InstanceType) – The type of instance to get the context for

• name (str) – Name of the instance

• system_folders (bool) – Wether to use system folders or if False, the user folders

Returns
Specialized subclass context of AppContext for the given instance type

Return type
AppContext

4.10. Function documentation 145

http://host.docker.internal


vantage6

select_context_class(type_)
Select the context class based on the type of instance.

Parameters
type (InstanceType) – The type of instance for which the context should be inserted

Returns
Specialized subclass of AppContext for the given instance type

Return type
ServerContext | NodeContext | AlgorithmStoreContext

Raises
NotImplementedError – If the type_ is not implemented

class NodeContext(instance_name, system_folders=False, config_file=None, print_log_header=True)
Bases: AppContext

Node context object for the host system.

See DockerNodeContext for the node instance mounts when running as a dockerized service.

Parameters

• instance_name (str) – Name of the configuration instance, corresponds to the filename
of the configuration file.

• system_folders (bool, optional) – _description_, by default N_FOL

• config_file (str, optional) – _description_, by default None

INST_CONFIG_MANAGER

alias of NodeConfigurationManager

classmethod available_configurations(system_folders=False)
Find all available server configurations in the default folders.

Parameters
system_folders (bool, optional) – System wide or user configuration, by default
N_FOL

Returns
The first list contains validated configuration files, the second list contains invalid configura-
tion files.

Return type
tuple[list, list]

classmethod config_exists(instance_name, system_folders=False)
Check if a configuration file exists.

Parameters

• instance_name (str) – Name of the configuration instance, corresponds to the filename
of the configuration file.

• system_folders (bool, optional) – System wide or user configuration, by default
N_FOL

Returns
Whether the configuration file exists or not

Return type
bool

146 Chapter 4. Index



vantage6

property databases: dict

Dictionary of local databases that are available for this node.

Returns
dictionary with database names as keys and their corresponding paths as values.

Return type
dict

property docker_container_name: str

Docker container name of the node.

Returns
Node’s Docker container name

Return type
str

property docker_network_name: str

Private Docker network name which is unique for this node.

Returns
Docker network name

Return type
str

property docker_squid_volume_name: str

Docker volume in which the SSH configuration is stored.

Returns
Docker volume name

Return type
str

property docker_ssh_volume_name: str

Docker volume in which the SSH configuration is stored.

Returns
Docker volume name

Return type
str

docker_temporary_volume_name(job_id)
Docker volume in which temporary data is stored. Temporary data is linked to a specific run. Multiple
algorithm containers can have the same run id, and therefore the share same temporary volume.

Parameters
job_id (int) – run id provided by the server

Returns
Docker volume name

Return type
str

property docker_volume_name: str

Docker volume in which task data is stored. In case a file based database is used, this volume contains the
database file as well.

4.10. Function documentation 147



vantage6

Returns
Docker volume name

Return type
str

property docker_vpn_volume_name: str

Docker volume in which the VPN configuration is stored.

Returns
Docker volume name

Return type
str

classmethod from_external_config_file(path, system_folders=False)
Create a node context from an external configuration file. External means that the configuration file is not
located in the default folders but its location is specified by the user.

Parameters

• path (str) – Path of the configuration file

• system_folders (bool, optional) – System wide or user configuration, by default
N_FOL

Returns
Node context object

Return type
NodeContext

get_database_uri(label='default')
Obtain the database URI for a specific database.

Parameters
label (str, optional) – Database label, by default “default”

Returns
URI to the database

Return type
str

static type_data_folder(system_folders=False)
Obtain OS specific data folder where to store node specific data.

Parameters
system_folders (bool, optional) – System wide or user configuration

Returns
Path to the data folder

Return type
Path

class ServerContext(instance_name, system_folders=True)
Bases: BaseServerContext

Server context

Parameters

148 Chapter 4. Index



vantage6

• instance_name (str) – Name of the configuration instance, corresponds to the filename
of the configuration file.

• system_folders (bool, optional) – System wide or user configuration, by default
S_FOL

INST_CONFIG_MANAGER

alias of ServerConfigurationManager

classmethod available_configurations(system_folders=True)
Find all available server configurations in the default folders.

Parameters
system_folders (bool, optional) – System wide or user configuration, by default
S_FOL

Returns
The first list contains validated configuration files, the second list contains invalid configura-
tion files.

Return type
tuple[list, list]

classmethod config_exists(instance_name, system_folders=True)
Check if a configuration file exists.

Parameters

• instance_name (str) – Name of the configuration instance, corresponds to the filename
of the configuration file.

• system_folders (bool, optional) – System wide or user configuration, by default
S_FOL

Returns
Whether the configuration file exists or not

Return type
bool

property docker_container_name: str

Name of the docker container that the server is running in.

Returns
Server’s docker container name

Return type
str

classmethod from_external_config_file(path, system_folders=True)
Create a server context from an external configuration file. External means that the configuration file is not
located in the default folders but its location is specified by the user.

Parameters

• path (str) – Path of the configuration file

• system_folders (bool, optional) – System wide or user configuration, by default
S_FOL

Returns
Server context object

4.10. Function documentation 149



vantage6

Return type
ServerContext

get_database_uri()

Obtain the database uri from the environment or the configuration. The VANTAGE6_DB_URI environment
variable is used by the Docker container, but can also be set by the user.

Returns
string representation of the database uri

Return type
str

class AlgorithmStoreContext(instance_name, system_folders=True)
Bases: BaseServerContext

A context class for the algorithm store server.

Parameters

• instance_name (str) – Name of the configuration instance, corresponds to the filename
of the configuration file.

• system_folders (bool, optional) – System wide or user configuration, by default
S_FOL

INST_CONFIG_MANAGER

alias of ServerConfigurationManager

classmethod available_configurations(system_folders=True)
Find all available server configurations in the default folders.

Parameters
system_folders (bool, optional) – System wide or user configuration, by default
S_FOL

Returns
The first list contains validated configuration files, the second list contains invalid configura-
tion files.

Return type
tuple[list, list]

classmethod config_exists(instance_name, system_folders=True)
Check if a configuration file exists.

Parameters

• instance_name (str) – Name of the configuration instance, corresponds to the filename
of the configuration file.

• system_folders (bool, optional) – System wide or user configuration, by default
S_FOL

Returns
Whether the configuration file exists or not

Return type
bool

property docker_container_name: str

Name of the docker container that the server is running in.

150 Chapter 4. Index



vantage6

Returns
Server’s docker container name

Return type
str

classmethod from_external_config_file(path, system_folders=True)
Create a server context from an external configuration file. External means that the configuration file is not
located in the default folders but its location is specified by the user.

Parameters

• path (str) – Path of the configuration file

• system_folders (bool, optional) – System wide or user configuration, by default
S_FOL

Returns
Server context object

Return type
AlgorithmStoreContext

get_database_uri()

Obtain the database uri from the environment or the configuration. The VANTAGE6_DB_URI environment
variable is used by the Docker container, but can also be set by the user.

Returns
string representation of the database uri

Return type
str

class BaseServerContext(instance_type, instance_name, system_folders=False, config_file=None,
print_log_header=True)

Bases: AppContext

Base context for a vantage6 server or algorithm store server

Contains functions that the ServerContext and AlgorithmStoreContext have in common.

classmethod from_external_config_file(path, server_type, config_name_env_var,
system_folders=True)

Create a server context from an external configuration file. External means that the configuration file is not
located in the default folders but its location is specified by the user.

Parameters

• path (str) – Path of the configuration file

• server_type (ServerType) – Type of server, either ‘server’ or ‘algorithm-store’

• config_name_env_var (str) – Name of the environment variable that contains the name
of the configuration

• system_folders (bool, optional) – System wide or user configuration, by default
S_FOL

Returns
Server context object

Return type
ServerContext

4.10. Function documentation 151



vantage6

get_database_uri(db_env_var)
Obtain the database uri from the environment or the configuration.

Parameters
db_env_var (str) – Name of the environment variable that contains the database uri

Returns
string representation of the database uri

Return type
str

4.10.4.7 vanatge6.cli.configuration_manager

class NodeConfiguration(*args, **kwargs)
Bases: Configuration

Stores the node’s configuration and defines a set of node-specific validators.

class NodeConfigurationManager(name, *args, **kwargs)
Bases: ConfigurationManager

Maintains the node’s configuration.

Parameters
name (str) – Name of the configuration file.

classmethod from_file(path)
Create a new instance of the NodeConfigurationManager from a configuration file.

Parameters
path (str) – Path to the configuration file.

Returns
A new instance of the NodeConfigurationManager.

Return type
NodeConfigurationManager

class ServerConfiguration(*args, **kwargs)
Bases: Configuration

Stores the server’s configuration and defines a set of server-specific validators.

class ServerConfigurationManager(name, *args, **kwargs)
Bases: ConfigurationManager

Maintains the server’s configuration.

Parameters
name (str) – Name of the configuration file.

classmethod from_file(path)
Create a new instance of the ServerConfigurationManager from a configuration file.

Parameters
path (str) – Path to the configuration file.

Returns
A new instance of the ServerConfigurationManager.

152 Chapter 4. Index



vantage6

Return type
ServerConfigurationManager

class TestConfiguration(*args, **kwargs)
Bases: Configuration

class TestingConfigurationManager(name, *args, **kwargs)
Bases: ConfigurationManager

classmethod from_file(path)
Load a configuration from a file.

Parameters

• path (Path | str) – The path to the file to load the configuration from.

• conf_class (Type[Configuration]) – The class to use for the configuration.

Returns
The configuration manager with the configuration.

Return type
ConfigurationManager

Raises
AssertionError – If the name of the configuration could not be extracted from the file path.

4.10.4.8 vantage6.cli.configuration_wizard

algo_store_configuration_questionaire(instance_name)
Questionary to generate a config file for the algorithm store server instance.

Parameters
instance_name (str) – Name of the server instance.

Returns
Dictionary with the new server configuration

Return type
dict

configuration_wizard(type_, instance_name, system_folders)
Create a configuration file for a node or server instance.

Parameters

• type (InstanceType) – Type of the instance to create a configuration for

• instance_name (str) – Name of the instance

• system_folders (bool) – Whether to use the system folders or not

Returns
Path to the configuration file

Return type
Path

node_configuration_questionaire(dirs, instance_name)
Questionary to generate a config file for the node instance.

Parameters

4.10. Function documentation 153



vantage6

• dirs (dict) – Dictionary with the directories of the node instance.

• instance_name (str) – Name of the node instance.

Returns
Dictionary with the new node configuration

Return type
dict

select_configuration_questionaire(type_, system_folders)
Ask which configuration the user wants to use. It shows only configurations that are in the default folder.

Parameters

• type (InstanceType) – Type of the instance to create a configuration for

• system_folders (bool) – Whether to use the system folders or not

Returns
Name of the configuration

Return type
str

server_configuration_questionaire(instance_name)
Questionary to generate a config file for the server instance.

Parameters
instance_name (str) – Name of the server instance.

Returns
Dictionary with the new server configuration

Return type
dict

4.10.4.9 vanatge6.cli.rabbitmq.queue_manager

class RabbitMQManager(ctx, network_mgr, image=None)
Manages the RabbitMQ docker container

Parameters

• ctx (ServerContext) – Configuration object

• network_mgr (NetworkManager) – Network manager for network in which server con-
tainer resides

• image (str) – Docker image to use for RabbitMQ container. By default, the image har-
bor2.vantage6.ai/infrastructure/rabbitmq is used.

is_running()

Returns
Whether the container has fully initialized RabbitMQ or not

Return type
bool

154 Chapter 4. Index



vantage6

start()

Start a docker container which runs a RabbitMQ queue

Return type
None

4.10.4.10 vanatge6.cli.rabbitmq

RabbitMQ utilities.

split_rabbitmq_uri(rabbit_uri)
Get details (user, pass, host, vhost, port) from a RabbitMQ uri.

Parameters
rabbit_uri (str) – URI of RabbitMQ service (‘amqp://$user:$pass@$host:$port/$vhost’)

Returns
The vhost defined in the RabbitMQ URI

Return type
dict[str]

4.10.4.11 vantage6.cli.utils

Utility functions for the CLI

check_config_name_allowed(name)
Check if configuration name is allowed

Parameters
name (str) – Name to be checked

Return type
None

check_if_docker_daemon_is_running(docker_client)
Check if Docker daemon is running

Parameters
docker_client (docker.DockerClient) – The docker client

Return type
None

prompt_config_name(name)
Get a new configuration name from the user, or simply return the name if it is not None.

Parameters
name (str) – Name to be checked

Returns
The name of the configuration

Return type
str

remove_file(file, file_type)
Remove a file if it exists.

Parameters

4.10. Function documentation 155



vantage6

• file (str) – absolute path to the file to be deleted

• file_type (str) – type of file, used for logging

Return type
None

4.10.5 Python client

This page contains the API reference of the functions in the vantage-client package.

4.10.5.1 User Client

vantage6.client

Client

alias of UserClient

class UserClient(*args, log_level='debug', **kwargs)
Bases: ClientBase

User interface to the vantage6-server

class Collaboration(parent)
Bases: SubClient

Collection of collaboration requests

add_organization(organization, collaboration=None)
Add an organization to a collaboration

Parameters
• organization (int) – Id of the organization you want to add to the collaboration
• collaboration (int, optional) – Id of the collaboration you want to add the orga-

nization to. If no id is provided the value of setup_collaboration() is used.
Returns

Containing the updated list of organizations in the collaboration
Return type

list[dict]

create(name, organizations, encrypted=False)
Create new collaboration

Parameters
• name (str) – Name of the collaboration
• organizations (list) – List of organization ids which participate in the collaboration
• encrypted (bool, optional) – Whenever the collaboration should be encrypted or

not, by default False
Returns

Containing the new collaboration meta-data
Return type

dict

delete(id_=None, delete_dependents=None)
Deletes a collaboration

Parameters
• id (int) – Id of the collaboration you want to delete

156 Chapter 4. Index



vantage6

• delete_dependents (bool, optional) – Delete the tasks, nodes and studies that are
part of the collaboration as well. If this is False, and dependents exist, the server will
refuse to delete the collaboration. Default is False.

Returns
Message from the server

Return type
dict

get(id_)
View specific collaboration

Parameters
id (int) – Id from the collaboration you want to view

Returns
Containing the collaboration information

Return type
dict

list(scope='organization', name=None, encrypted=None, organization=None, page=1, per_page=20)
View your collaborations

Parameters
• scope (str, optional) – Scope of the list, accepted values are organization and

global. In case of organization you get the collaborations in which your organization
participates. If you specify global you get the collaborations which you are allowed to
see.

• name (str, optional (with LIKE operator)) – Filter collaborations by name
• organization (int, optional) – Filter collaborations by organization id
• encrypted (bool, optional) – Filter collaborations by whether or not they are en-

crypted
• page (int, optional) – Pagination page, by default 1
• per_page (int, optional) – Number of items on a single page, by default 20

Returns
Containing collabotation information

Return type
list[dict]

Notes

• Pagination does not work in combination with scope organization as pagination is missing at
endpoint /organization/<id>/collaboration

remove_organization(organization, collaboration=None)
Remove an organization from a collaboration

Parameters
• organization (int) – Id of the organization you want to remove from the collaboration
• collaboration (int, optional) – Id of the collaboration you want to remove the

organization from. If no id is provided the value of setup_collaboration() is used.
Returns

Containing the updated list of organizations in the collaboration
Return type

list[dict]

update(id_=None, name=None, encrypted=None, organizations=None)
Update collaboration information

Parameters

4.10. Function documentation 157



vantage6

• id (int) – Id of the collaboration you want to update. If no id is provided the value of
setup_collaboration() is used.

• name (str, optional) – New name of the collaboration
• encrypted (bool, optional) – New encryption status of the collaboration
• organizations (list[int], optional) – New list of organization ids which par-

ticipate in the collaboration
Returns

Containing the updated collaboration information
Return type

dict

class Node(parent)
Bases: SubClient

Collection of node requests

create(collaboration=None, organization=None, name=None)
Register new node

Parameters
• collaboration (int) – Collaboration id to which this node belongs. If no ID was

provided the, collaboration from client.setup_collaboration() is used.
• organization (int, optional) – Organization id to which this node belongs. If no

id provided the users organization is used. Default value is None
• name (str, optional) – Name of the node. If no name is provided the server will

generate one. Default value is None
Returns

Containing the meta-data of the new node
Return type

dict

delete(id_)
Deletes a node

Parameters
id (int) – Id of the node you want to delete

Returns
Message from the server

Return type
dict

get(id_)
View specific node

Parameters
id (int) – Id of the node you want to inspect

Returns
Containing the node meta-data

Return type
dict

kill_tasks(id_)
Kill all tasks currently running on a node

Parameters
id (int) – Id of the node of which you want to kill the tasks

Returns
Message from the server

Return type
dict

158 Chapter 4. Index



vantage6

list(name=None, organization=None, collaboration=None, study=None, is_online=None, ip=None,
last_seen_from=None, last_seen_till=None, page=1, per_page=20)

List nodes
Parameters

• name (str, optional) – Filter by name (with LIKE operator)
• organization (int, optional) – Filter by organization id
• collaboration (int, optional) – Filter by collaboration id. If no id is provided but

collaboration was defined earlier by user, filtering on that collaboration
• study (int, optional) – Filter by study id
• is_online (bool, optional) – Filter on whether nodes are online or not
• ip (str, optional) – Filter by node VPN IP address
• last_seen_from (str, optional) – Filter if node has been online since date (format:

yyyy-mm-dd)
• last_seen_till (str, optional) – Filter if node has been online until date (format:

yyyy-mm-dd)
• page (int, optional) – Pagination page, by default 1
• per_page (int, optional) – Number of items on a single page, by default 20

Return type
list[dict]

Returns
•
• list of dicts – Containing meta-data of the nodes

update(id_, name=None, clear_ip=None)
Update node information

Parameters
• id (int) – Id of the node you want to update
• name (str, optional) – New node name, by default None
• clear_ip (bool, optional) – Clear the VPN IP address of the node, by default None

Returns
Containing the meta-data of the updated node

Return type
dict

class Organization(parent)
Bases: SubClient

Collection of organization requests

create(name, address1, address2, zipcode, country, domain, public_key=None)
Create new organization

Parameters
• name (str) – Name of the organization
• address1 (str) – Street and number
• address2 (str) – City
• zipcode (str) – Zip or postal code
• country (str) – Country
• domain (str) – Domain of the organization (e.g. vantage6.ai)
• public_key (str, optional) – Public key of the organization. This can be set later,

by default None
Returns

Containing the information of the new organization
Return type

dict

4.10. Function documentation 159



vantage6

get(id_=None)
View specific organization

Parameters
id (int, optional) – Organization id of the organization you want to view. In case no
id is provided it will display your own organization, default value is None.

Returns
Containing the organization meta-data

Return type
dict

list(name=None, country=None, collaboration=None, study=None, page=None, per_page=None)
List organizations

Parameters
• name (str, optional) – Filter by name (with LIKE operator)
• country (str, optional) – Filter by country
• collaboration (int, optional) – Filter by collaboration id. If

client.setup_collaboration() was called, the previously setup collaboration is used.
Default value is None

• study (int, optional) – Filter by study id
• page (int, optional) – Pagination page, by default 1
• per_page (int, optional) – Number of items on a single page, by default 20

Returns
Containing meta-data information of the organizations

Return type
list[dict]

update(id_=None, name=None, address1=None, address2=None, zipcode=None, country=None,
domain=None, public_key=None)

Update organization information
Parameters

• id (int, optional) – Organization id, by default None
• name (str, optional) – New organization name, by default None
• address1 (str, optional) – Address line 1, by default None
• address2 (str, optional) – Address line 2, by default None
• zipcode (str, optional) – Zipcode, by default None
• country (str, optional) – Country, by default None
• domain (str, optional) – Domain of the organization (e.g. iknl.nl), by default None
• public_key (str, optional) – public key, by default None

Returns
The meta-data of the updated organization

Return type
dict

class Result(parent)
Bases: SubClient

Client to get the results of one or multiple algorithm runs

from_task(task_id)
Get all results from a specific task

Parameters
task_id (int) – Id of the task to get results from

Returns
Containing the results

160 Chapter 4. Index



vantage6

Return type
list[dict]

get(id_)
View a specific result

Parameters
id (int) – id of the run you want to inspect

Returns
Containing the run data

Return type
dict

class Role(parent)
Bases: SubClient

create(name, description, rules, organization=None)
Register new role

Parameters
• name (str) – Role name
• description (str) – Human readable description of the role
• rules (list) – Rules that this role contains
• organization (int, optional) – Organization to which this role belongs. In case

this is not provided the users organization is used. By default None
Returns

Containing meta-data of the new role
Return type

dict

delete(role)
Delete role

Parameters
role (int) – CAUTION! Id of the role to be deleted. If you remove roles that are attached
to you, you might lose access!

Returns
Message from the server

Return type
dict

get(id_)
View specific role

Parameters
id (int) – Id of the role you want to insepct

Returns
Containing meta-data of the role

Return type
dict

list(name=None, description=None, organization=None, rule=None, user=None, include_root=None,
page=1, per_page=20)

List of roles
Parameters

• name (str, optional) – Filter by name (with LIKE operator)
• description (str, optional) – Filter by description (with LIKE operator)
• organization (int, optional) – Filter by organization id
• rule (int, optional) – Only show roles that contain this rule id
• user (int, optional) – Only show roles that belong to a particular user id

4.10. Function documentation 161



vantage6

• include_root (bool, optional) – Include roles that are not assigned to any partic-
ular organization

• page (int, optional) – Pagination page, by default 1
• per_page (int, optional) – Number of items on a single page, by default 20

Returns
Containing roles meta-data

Return type
list[dict]

update(role, name=None, description=None, rules=None)
Update role

Parameters
• role (int) – Id of the role that updated
• name (str, optional) – New name of the role, by default None
• description (str, optional) – New description of the role, by default None
• rules (list, optional) – CAUTION! This will not add rules but replace them. If

you remove rules from your own role you lose access. By default None
Returns

Containing the updated role data
Return type

dict

class Rule(parent)
Bases: SubClient

get(id_)
View specific rule

Parameters
id (int) – Id of the rule you want to view

Returns
Containing the information about this rule

Return type
dict

list(name=None, operation=None, scope=None, role=None, page=1, per_page=20)
List of all available rules

Parameters
• name (str, optional) – Filter by rule name
• operation (str, optional) – Filter by operation
• scope (str, optional) – Filter by scope
• role (int, optional) – Only show rules that belong to this role id
• page (int, optional) – Pagination page, by default 1
• per_page (int, optional) – Number of items on a single page, by default 20

Returns
Containing all the rules from the vantage6 server

Return type
list of dicts

class Run(parent)
Bases: SubClient

from_task(task_id, include_task=False)
Get all algorithm runs from a specific task

Parameters
• task_id (int) – Id of the task to get results from

162 Chapter 4. Index



vantage6

• include_task (bool, optional) – Whenever to include the task or not, by default
False

Returns
Containing the results

Return type
list[dict]

get(id_, include_task=False)
View a specific run

Parameters
• id (int) – id of the run you want to inspect
• include_task (bool, optional) – Whenever to include the task or not, by default

False
Returns

Containing the run data
Return type

dict

list(task=None, organization=None, state=None, node=None, include_task=False, started=None,
assigned=None, finished=None, port=None, page=None, per_page=None)

List runs
Parameters

• task (int, optional) – Filter by task id
• organization (int, optional) – Filter by organization id
• state (int, optional) – Filter by state: (‘open’,)
• node (int, optional) – Filter by node id
• include_task (bool, optional) – Whenever to include the task or not, by default

False
• started (tuple[str, str], optional) – Filter on a range of start times (format:

yyyy-mm-dd)
• assigned (tuple[str, str], optional) – Filter on a range of assign times (format:

yyyy-mm-dd)
• finished (tuple[str, str], optional) – Filter on a range of finished times (for-

mat: yyyy-mm-dd)
• port (int, optional) – Port on which run was computed
• page (int, optional) – Pagination page number, defaults to 1
• per_page (int, optional) – Number of items per page, defaults to 20

Returns
A dictionary containing the key ‘data’ which contains a list of runs, and a key ‘links’ which
contains the pagination metadata.

Return type
dict | list[dict]

class Task(parent)
Bases: SubClient

create(organizations, name, image, description, input_, collaboration=None, study=None,
databases=None)

Create a new task
Parameters

• organizations (list) – Organization ids (within the collaboration) which need to
execute this task

• name (str) – Human readable name
• image (str) – Docker image name which contains the algorithm
• description (str) – Human readable description

4.10. Function documentation 163



vantage6

• input (dict) – Algorithm input
• collaboration (int, optional) – Id of the collaboration to which this task belongs.

Should be set if the study is not set
• study (int, optional) – Id of the study to which this task belongs. Should be set if

the collaboration is not set
• databases (list[dict], optional) – Databases to be used at the node. Each dict

should contain at least a ‘label’ key. Additional keys are ‘query’ (if using SQL/SPARQL
databases), ‘sheet_name’ (if using Excel databases), and ‘preprocessing’ information.

Returns
A dictionairy containing data on the created task, or a message from the server if the task
could not be created

Return type
dict

delete(id_)
Delete a task

Also removes the related runs.
Parameters
id (int) – Id of the task to be removed

Returns
Message from the server

Return type
dict

get(id_, include_results=False)
View specific task

Parameters
• id (int) – Id of the task you want to view
• include_results (bool, optional) – Whenever to include the results or not, by

default False
Returns

Containing the task data
Return type

dict

kill(id_)
Kill a task running on one or more nodes

Note that this does not remove the task from the database, but merely halts its execution (and prevents
it from being restarted).

Parameters
id (int) – Id of the task to be killed

Returns
Message from the server

Return type
dict

list(initiating_org=None, initiating_user=None, collaboration=None, study=None, image=None,
parent=None, job=None, name=None, include_results=False, description=None, database=None,
run=None, status=None, user_created=None, page=1, per_page=20)

List tasks
Parameters

• name (str, optional) – Filter by the name of the task. It will match with a Like
operator. I.e. E% will search for task names that start with an ‘E’.

• initiating_org (int, optional) – Filter by initiating organization

164 Chapter 4. Index



vantage6

• initiating_user (int, optional) – Filter by initiating user
• collaboration (int, optional) – Filter by collaboration. If no id is provided but

collaboration was defined earlier by setup_collaboration(), filtering on that collaboration
• study (int, optional) – Filter by study
• image (str, optional) – Filter by Docker image name (with LIKE operator)
• parent (int, optional) – Filter by parent task
• job (int, optional) – Filter by job id
• include_results (bool, optional) – Whenever to include the results in the tasks,

by default False
• description (str, optional) – Filter by description (with LIKE operator)
• database (str, optional) – Filter by database (with LIKE operator)
• run (int, optional) – Only show task that contains this run id
• status (str, optional) – Filter by task status (e.g. ‘active’, ‘pending’, ‘completed’,

‘crashed’)
• user_created (bool, optional) – If True, show only top-level tasks created by

users. If False, show only subtasks created by algorithm containers.
• page (int, optional) – Pagination page, by default 1
• per_page (int, optional) – Number of items on a single page, by default 20

Returns
dictonairy containing the key ‘data’ which contains the tasks and a key ‘links’ containing
the pagination metadata

Return type
dict

class User(parent)
Bases: SubClient

create(username, firstname, lastname, password, email, organization=None, roles=[], rules=[])
Create new user

Parameters
• username (str) – Used to login to the service. This can not be changed later.
• firstname (str) – Firstname of the new user
• lastname (str) – Lastname of the new user
• password (str) – Password of the new user
• email (str) – Email address of the new user
• organization (int) – Organization id this user should belong to
• roles (list of ints) – Role ids that are assigned to this user. Note that you can only

assign roles if you own the rules within this role.
• rules (list of ints) – Rule ids that are assigned to this user. Note that you can only

assign rules that you own
Returns

Containing data of the new user
Return type

dict

get(id_=None)
View user information

Parameters
id (int, optional) – User id, by default None. When no id is provided your own user
information is displayed

Returns
Containing user information

Return type
dict

4.10. Function documentation 165



vantage6

list(username=None, organization=None, firstname=None, lastname=None, email=None, role=None,
rule=None, last_seen_from=None, last_seen_till=None, page=1, per_page=20)

List users
Parameters

• username (str, optional) – Filter by username (with LIKE operator)
• organization (int, optional) – Filter by organization id
• firstname (str, optional) – Filter by firstname (with LIKE operator)
• lastname (str, optional) – Filter by lastname (with LIKE operator)
• email (str, optional) – Filter by email (with LIKE operator)
• role (int, optional) – Show only users that have this role id
• rule (int, optional) – Show only users that have this rule id
• last_seen_from (str, optional) – Filter users that have logged on since (format

yyyy-mm-dd)
• last_seen_till (str, optional) – Filter users that have logged on until (format

yyyy-mm-dd)
• page (int, optional) – Pagination page, by default 1
• per_page (int, optional) – Number of items on a single page, by default 20

Returns
Containing the meta-data of the users

Return type
list of dicts

update(id_=None, firstname=None, lastname=None, organization=None, rules=None, roles=None,
email=None)

Update user details

In case you do not supply a user_id, your user is being updated.
Parameters

• id (int) – User id from the user you want to update
• firstname (str) – Your first name
• lastname (str) – Your last name
• organization (int) – Organization id of the organization you want to be part of. This

can only done by super-users.
• rules (list of ints) – USE WITH CAUTION! Rule ids that should be assigned to

this user. All previous assigned rules will be removed!
• roles (list of ints) – USE WITH CAUTION! Role ids that should be assigned to

this user. All previous assigned roles will be removed!
• email (str) – New email from the user

Returns
A dict containing the updated user data

Return type
dict

class Util(parent)
Bases: SubClient

Collection of general utilities

change_my_password(current_password, new_password)
Change your own password by providing your current password

Parameters
• current_password (str) – Your current password
• new_password (str) – Your new password

Returns
Message from the server

166 Chapter 4. Index



vantage6

Return type
dict

generate_private_key(file_=None)
Generate new private key

Parameters
file (str, optional) – Path where to store the private key, by default None

Return type
None

get_server_health()

View the health of the vantage6-server
Returns

Containing the server health information
Return type

dict

get_server_version(attempts_on_timeout=None)
View the version number of the vantage6-server :type attempts_on_timeout: Optional[int] :param
attempts_on_timeout: Number of attempts to make when the server is not responding.

Default is unlimited.

Returns
A dict containing the version number

Return type
dict

reset_my_password(email=None, username=None)
Start reset password procedure

Either a username of email needs to be provided.
Parameters

• email (str, optional) – Email address of your account, by default None
• username (str, optional) – Username of your account, by default None

Returns
Message from the server

Return type
dict

reset_two_factor_auth(password, email=None, username=None)
Start reset procedure for two-factor authentication

The password and either username of email must be provided.
Parameters

• password (str) – Password of your account
• email (str, optional) – Email address of your account, by default None
• username (str, optional) – Username of your account, by default None

Returns
Message from the server

Return type
dict

set_my_password(token, password)
Set a new password using a recovery token

Token can be obtained through .reset_password(. . . )
Parameters

• token (str) – Token obtained from reset_password

4.10. Function documentation 167



vantage6

• password (str) – New password
Returns

Message from the server
Return type

dict

set_two_factor_auth(token)
Setup two-factor authentication using a recovery token after you have lost access.

Token can be obtained through .reset_two_factor_auth(. . . )
Parameters
token (str) – Token obtained from reset_two_factor_auth

Returns
Message from the server

Return type
dict

authenticate(username, password, mfa_code=None)
Authenticate as a user

It also collects some additional info about your user.

Parameters

• username (str) – Username used to authenticate

• password (str) – Password used to authenticate

• mfa_code (str | int) – Six-digit two-factor authentication code

Return type
None

setup_collaboration(collaboration_id)
Setup the collaboration.

This gets the collaboration from the server and stores its details in the client and sets the algorithm stores
available for this collaboration. When this has been called, other functions no longer require the collabo-
ration_id to be provided.

Parameters
collaboration_id (int) – Id of the collaboration

Return type
None

wait_for_results(task_id, interval=1)
Polls the server to check when results are ready, and returns the results when the task is completed.

Parameters

• task_id (int) – ID of the task that you are waiting for

• interval (float) – Interval in seconds between checks if task is finished. Default 1.

Returns
A dictionary with the results of the task, after it has completed.

Return type
dict

168 Chapter 4. Index



vantage6

class StudySubClient(parent)
Bases: SubClient

Subclient for the algorithm store.

add_organization(organization, study=None)
Add an organization to a study

Parameters

• organization (int) – Id of the organization you want to add to the study

• study (int, optional) – Id of the study you want to add the organization to.

Returns
Containing the updated list of organizations in the study

Return type
list[dict]

create(name, organizations, collaboration=None)
Create new study

Parameters

• name (str) – Name of the study

• organizations (list[int]) – List of organization ids which participate in the study

• collaboration (int | None) – Id of the collaboration the study is part of. If None, the
value of setup_collaboration() is used.

Returns
Containing the new study information

Return type
dict

delete(id_=None)
Deletes a study

Parameters
id (int) – Id of the study you want to delete

Returns
Message from the server

Return type
dict

get(id_)
Get a study by its id.

Parameters
id (int) – The id of the study

Returns
The study

Return type
dict

4.10. Function documentation 169



vantage6

list(name=None, organization=None, include_organizations=False, page=1, per_page=20)
View your studies

Parameters

• name (str, optional (with LIKE operator)) – Filter studies by name

• organization (int, optional) – Filter studies by organization id

• include_organizations (bool, optional) – Include organizations in the response,
by default False

• page (int, optional) – Pagination page, by default 1

• per_page (int, optional) – Number of items on a single page, by default 20

Returns
Containing collabotation information

Return type
list[dict]

remove_organization(organization, study=None)
Remove an organization from a study

Parameters

• organization (int) – Id of the organization you want to remove from the study

• study (int, optional) – Id of the study you want to remove the organization from

Returns
Containing the updated list of organizations in the study

Return type
list[dict]

update(id_, name=None, organizations=None)
Update study information

Parameters

• id (int) – Id of the study you want to update.

• name (str, optional) – New name of the study

• organizations (list[int], optional) – New list of organization ids which partici-
pate in the study

Returns
Containing the updated study information

Return type
dict

class AlgorithmSubClient(parent)
Bases: SubClient

Subclient for the algorithms from the algorithm store.

create(name, description, image, partitioning, vantage6_version, functions)
Add an algorithm to the algorithm store

Parameters

• name (str) – Name of the algorithm

170 Chapter 4. Index



vantage6

• description (str) – Description of the algorithm

• image (str) – Docker image of the algorithm

• partitioning (str) – Partitioning of the algorithm (horizontal or vertical)

• vantage6_version (str) – Vantage6 version of the algorithm

• functions (list[dict]) – List of functions of the algorithm. Each function is a dict
with the following keys: - name: str

Name of the function

– description: str, optional
Description of the function

– type: string
Type of the function (central or federated)

– databases: list[dict]
List of databases of the function. Each database is a dict with the following keys: -
name: str

Name of the database

∗ description: str, optional
Description of the database

– arguments: list[dict]
List of arguments of the function. Each argument is a dict with the following keys:
- name: str

Name of the argument

∗ description: str, optional
Description of the argument

∗ type: str
Type of the argument. Can be ‘string’, ‘integer’, ‘float’, ‘boolean’, ‘json’, ‘col-
umn’, ‘organization’ or ‘organizations’

Returns
The created algorithm

Return type
dict

delete(id_)
Delete an algorithm from the algorithm store

Parameters
id (int) – Id of the algorithm

Returns
The deleted algorithm

Return type
dict

get(id_)
Get an algorithm by its id.

4.10. Function documentation 171



vantage6

Parameters
id (int) – The id of the algorithm.

Returns
The algorithm.

Return type
dict

list(name=None, description=None, image=None, partitioning=None, v6_version=None)
List algorithms

Parameters

• name (str) – Filter by name (with LIKE operator).

• description (str) – Filter by description (with LIKE operator).

• image (str) – Filter by image (with LIKE operator).

• partitioning (str) – Filter by partitioning (horizontal or vertical).

• v6_version (str) – Filter by version (with LIKE operator).

Returns
List of algorithms

Return type
list[dict]

class AlgorithmStoreSubClient(parent)
Bases: SubClient

Subclient for the algorithm store.

create(algorithm_store_url, name, collaboration=None, all_collaborations=False, force=False)
Link an algorithm store to one or more collaborations.

Parameters

• algorithm_store_url (str) – The url of the algorithm store.

• name (str) – The name of the algorithm store.

• collaboration (int, optional) – The id of the collaboration to link the al-
gorithm store to. If not given and client.setup_collaboration() was called, the col-
laboration id from the setup is used. If neither is the case, all_collaborations must
be set to True explicitly.

• all_collaborations (bool, optional) – If True, the algorithm store is
linked to all collaborations. If False, the collaboration_id must be given.

• force (bool, optional) – If True, the algorithm store will be linked to the
collaboration even for localhost urls - which is not recommended in production
scenarios for security reasons.

Returns
The algorithm store.

Return type
dict

delete(id_=None)
Delete an algorithm store.

172 Chapter 4. Index



vantage6

Parameters
id (int) – The id of the algorithm store. If not given, the algorithm store must be set
with client.store.set().

Returns
The deleted algorithm store.

Return type
dict

get(id_)
Get an algorithm store by its id.

Parameters
id (int) – The id of the algorithm store.

Returns
The algorithm store.

Return type
dict

list(name=None, url=None, collaboration=None, page=1, per_page=10)
List all algorithm stores.

Parameters

• name (str, optional) – Filter by name (with LIKE operator)

• url (str, optional) – Filter by algorithm store url (with LIKE operator)

• collaboration (int, optional) – Filter by collaboration id. If not given and
client.setup_collaboration() was called, the collaboration id from the setup is used.
Otherwise, all algorithm stores are returned.

• page (int, optional) – The page number to retrieve.

• per_page (int, optional) – The number of items to retrieve per page.

Returns
The algorithm stores.

Return type
list[dict]

set(id_)
” Set the algorithm store to use for the client.

Parameters
id (int) – The id of the algorithm store.

Returns
The algorithm store.

Return type
dict

update(id_=None, name=None, collaboration=None, all_collaborations=None)
Update an algorithm store.

Parameters

• id (int) – The id of the algorithm store. If not given, the algorithm store must be
set with client.store.set().

• name (str, optional) – The name of the algorithm store.

4.10. Function documentation 173



vantage6

• collaboration (int, optional) – The id of the collaboration to link the al-
gorithm store to.

• all_collaborations (bool, optional) – If True, the algorithm store is
linked to all collaborations. If False, the collaboration_id must be given.

Returns
The updated algorithm store.

Return type
dict

vantage6.client.utils

class LogLevel(value)
Enum for the different log levels

Variables

• DEBUG (str) – The debug log level

• INFO (str) – The info log level

• WARN (str) – The warn log level

• ERROR (str) – The error log level

• CRITICAL (str) – The critical log level

4.10.5.2 Custom client exceptions

vantage6.client.exceptions

exception DeserializationException

Exception raised when deserialization of algorithm input or result fails.

4.10.6 Algorithm client and tools

4.10.6.1 Algorithm Client

vantage6.algorithm.client

class AlgorithmClient(token, *args, **kwargs)
Bases: ClientBase

Interface to communicate between the algorithm container and the central server via a local proxy server.

An algorithm container cannot communicate directly to the central server as it has no internet connection. The
algorithm can, however, talk to a local proxy server which has interface to the central server. This way we make
sure that the algorithm container does not share details with others, and we also can encrypt the results for a
specific receiver. Thus, this not a interface to the central server but to the local proxy server - however, the
interface looks identical to make it easier to use.

Parameters

• token (str) – JWT (container) token, generated by the node the algorithm container
runs on

174 Chapter 4. Index



vantage6

• *args – Arguments passed to the parent ClientBase class.

• **kwargs – Arguments passed to the parent ClientBase class.
class Collaboration(parent)

Bases: SubClient

Get information about the collaboration.

get()

Get the collaboration data.

Returns
Dictionary containing the collaboration data.

Return type
dict

class Node(parent)
Bases: SubClient

Get information about the node.

get()

Get the node data.

Returns
Dictionary containing data on the node this algorithm is running on.

Return type
dict

class Organization(parent)
Bases: SubClient

Get information about organizations in the collaboration.

get(id_)
Get an organization by ID.

Parameters
id (int) – ID of the organization to retrieve

Returns
Dictionary containing the organization data.

Return type
dict

list()

Obtain all organization in the collaboration.

The container runs in a Node which is part of a single collaboration. This method retrieves all
organization data that are within that collaboration. This can be used to target specific organizations
in a collaboration.

Returns
List of organizations in the collaboration.

Return type
list[dict]

4.10. Function documentation 175



vantage6

class Result(parent)
Bases: SubClient

Result client for the algorithm container.

This client is used to get results from the central server.

from_task(task_id)
Obtain results from a specific task at the server.

Containers are allowed to obtain the results of their children (having the same job_id at the server).
The permissions are checked at te central server.

Results are decrypted by the proxy server and decoded here before returning them to the algorithm.

Parameters
task_id (int) – ID of the task from which you want to obtain the results

Returns
List of results. The type of the results depends on the algorithm.

Return type
list[Any]

get(id_)
Obtain a specific result from the central server.

Parameters
id (int) – ID of the algorithm run of which the result should be obtained.

Returns
Result of the algorithm run.

Return type
Any

class Run(parent)
Bases: SubClient

Algorithm Run client for the algorithm container.

This client is used to obtain algorithm runs of tasks with the same job_id from the central server.

from_task(task_id)
Obtain algorithm runs from a specific task at the server.

Containers are allowed to obtain the runs of their children (having the same job_id at the server).
The permissions are checked at te central server.

Note that the returned results are not decrypted. The algorithm is responsible for decrypting the
results.

Parameters
task_id (int) – ID of the task from which you want to obtain the algorithm runs

Returns
List of algorithm run data. The type of the results depends on the algorithm.

Return type
list

176 Chapter 4. Index



vantage6

get(id_)
Obtain a specific algorithm run from the central server.

Parameters
id (int) – ID of the algorithm run that should be obtained.

Returns
Algorithm run data.

Return type
dict

class Study(parent)
Bases: SubClient

Get information about the study or studies.

get(id_)
Get the study data by ID.

Parameters
id (int) – ID of the study to retrieve

Returns
Dictionary containing study data.

Return type
dict

list()

Obtain all studies in the collaboration.

The container runs in a node which is part of a single collaboration, which may contain zero or more
studies. This method retrieves all studies that are part of the collaboration.

Returns
List of studies in the collaboration.

Return type
list[dict]

class Task(parent)
Bases: SubClient

A task client for the algorithm container.

It provides functions to get task information and create new tasks.

create(input_, organizations=None, name='subtask', description=None)
Create a new (child) task at the central server.

Containers are allowed to create child tasks (having the same job_id) at the central server. The
docker image must be the same as the docker image of this container self.

Parameters

• input (bytes) – Input to the task. Should be b64 encoded.

• organizations (list[int]) – List of organization IDs that should execute
the task.

• name (str, optional) – Name of the subtask

• description (str, optional) – Description of the subtask

4.10. Function documentation 177



vantage6

Returns
Dictionary containing information on the created task

Return type
dict

get(task_id)
Retrieve a task at the central server.

Parameters
task_id (int) – ID of the task to retrieve

Returns
Dictionary containing the task information

Return type
dict

class VPN(parent)
Bases: SubClient

A VPN client for the algorithm container.

It provides functions to obtain the IP addresses of other containers.

get_addresses(only_children=False, only_parent=False, only_siblings=False, only_self=False,
include_children=False, include_parent=False, label=None)

Get information about the VPN IP addresses and ports of other algorithm containers involved in the
current task. These addresses can be used to send VPN communication to.

Multiple ports may be exposed for a single algorithm run, so it is possible that multiple ports are
returned for a single IP.

Parameters

• only_children (bool, optional) – Only return the IP addresses of the
children of the current task, by default False. Incompatible with other only_*
parameters.

• only_parent (bool, optional) – Only return the IP address of the parent
of the current task, by default False. Incompatible with other only_* param-
eters.

• only_siblings (bool, optional) – Only return the IP addresses of the
siblings of the current task, by default False. Incompatible with other only_*
parameters.

• only_self (bool, optional) – Only return the IP address of the current
task, by default False. Incompatible with other only_* parameters.

• include_children (bool, optional) – Include the IP addresses of the
children of the current task, by default False. Incompatible with only_parent,
superseded by only_children.

• include_parent (bool, optional) – Include the IP address of the par-
ent of the current task, by default False. Incompatible with only_children,
superseded by only_parent.

• label (str, optional) – The label of the port you are interested in, which
is set in the algorithm Dockerfile. If this parameter is set, only the ports with
this label will be returned.

178 Chapter 4. Index



vantage6

Returns
List of dictionaries with algorithm addresses. Each dictionary contains the keys
‘ip’, ‘port’, ‘label’, ‘organization_id’, ‘task_id’, and ‘parent_id’. If obtaining the
VPN addresses from the server fails, a dictionary with a ‘message’ key is returned
instead.

Return type
list[dict]

get_child_addresses()

Get the IP addresses and port numbers of the children of the current algorithm run.

Multiple ports may be exposed for a single algorithm run, so it is possible that multiple ports are
returned for a single IP.

Returns
List of dictionaries with algorithm addresses. Each dictionary contains the keys
‘ip’, ‘port’, ‘label’, ‘organization_id’, ‘task_id’, and ‘parent_id’. If obtaining the
VPN addresses from the server fails, a dictionary with a ‘message’ key is returned
instead.

Return type
list[dict]

get_own_address()

Get the IP address and port number of the current algorithm run.

Multiple ports may be exposed for a single algorithm run, so it is possible that multiple ports are
returned for a single IP.

Returns
List of dictionaries with algorithm addresses. Each dictionary contains the keys
‘ip’, ‘port’, ‘label’, ‘organization_id’, ‘task_id’, and ‘parent_id’. If obtaining the
VPN addresses from the server fails, a dictionary with a ‘message’ key is returned
instead.

Return type
list[dict]

get_parent_address()

Get the IP address and port number of the parent of the current algorithm run.

Multiple ports may be exposed for a single algorithm run, so it is possible that multiple ports are
returned for a single IP.

Returns
List of dictionaries with algorithm addresses. Each dictionary contains the keys
‘ip’, ‘port’, ‘label’, ‘organization_id’, ‘task_id’, and ‘parent_id’. If obtaining the
VPN addresses from the server fails, a dictionary with a ‘message’ key is returned
instead.

Return type
list[dict]

get_sibling_addresses()

Get the IP addresses and port numbers of the siblings of the current algorithm run.

Multiple ports may be exposed for a single algorithm run, so it is possible that multiple ports are
returned for a single IP.

4.10. Function documentation 179



vantage6

Returns
List of dictionaries with algorithm addresses. Each dictionary contains the keys
‘ip’, ‘port’, ‘label’, ‘organization_id’, ‘task_id’, and ‘parent_id’. If obtaining the
VPN addresses from the server fails, a dictionary with a ‘message’ key is returned
instead.

Return type
list[dict]

authenticate(credentials=None, path=None)
Overwrite base authenticate function to prevent algorithm containers from trying to authenticate, which
they would be unable to do (they are already provided with a token on container startup).

Function parameters have only been included to make the interface identical to the parent class. They are
not used.

Parameters

• credentials (dict) – Credentials to authenticate with.

• path (str) – Path to the credentials file.

Raises
NotImplementedError – Always.

Return type
None

refresh_token()

Overwrite base refresh_token function to prevent algorithm containers from trying to refresh their token,
which they would be unable to do.

Raises
NotImplementedError – Always.

Return type
None

request(*args, **kwargs)
Make a request to the central server. This overwrites the parent function so that containers will not try to
refresh their token, which they would be unable to do.

Parameters

• *args – Arguments passed to the parent ClientBase.request function.

• **kwargs – Arguments passed to the parent ClientBase.request function.

Returns
Response from the central server.

Return type
dict

wait_for_results(task_id, interval=1)
Poll the central server until results are available and then return them.

Parameters

• task_id (int) – ID of the task for which the results should be obtained.

• interval (float) – Interval in seconds to wait between checking server for re-
sults.

Returns
List of task results.

180 Chapter 4. Index



vantage6

Return type
list

4.10.6.2 Algorithm tools

vantage6.tools.wrappers

This module contains algorithm wrappers. These wrappers are used to provide different data adapters to the algorithms.
This way we ony need to write the algorithm once and can use it with different data adapters.

Currently the following wrappers are available:

• DockerWrapper (= CSVWrapper)

• SparqlDockerWrapper

• ParquetWrapper

• SQLWrapper

• ExcelWrapper

When writing the Docker file for the algorithm, the correct wrapper will automatically be selected based on the database
type. The database type is set by the vantage6 node based on its configuration file.

class DatabaseType(value)
Bases: str, Enum

Enum for the different database types.
Variables

• CSV (str) – CSV database

• SQL (str) – SQL database

• EXCEL (str) – Excel database

• SPARQL (str) – SparQL database

• PARQUET (str) – Parquet database

get_column_names(database_uri, db_type=None, query=None, sheet_name=None)
Get the column names of dataframe that will be loaded into an algorithm

Parameters

• database_uri (str) – Path to the database file or URI of the database.

• db_type (str) – The type of the database. This should be one of the CSV, SQL, Excel,
Sparql or Parquet.

• query (str) – The query to execute on the database. This is required for SQL and
Sparql databases.

• sheet_name (str) – The sheet name to read from the Excel file. This is optional and
only for Excel databases.

Returns
The column names of the dataframe

Return type
list[str]

4.10. Function documentation 181



vantage6

load_csv_data(database_uri)
Load the local privacy-sensitive data from the database.

Parameters
database_uri (str) – URI of the csv file, supplied by te node

Returns
The data from the csv file

Return type
pd.DataFrame

load_data(database_uri, db_type=None, query=None, sheet_name=None)
Read data from database and give it back to the algorithm.

If the database type is unknown, this function will exit. Also, a ‘query’ is required for SQL and SparQL databases.
If it is not present, this function will exit the algorithm.

Parameters

• database_uri (str) – Path to the database file or URI of the database.

• db_type (str) – The type of the database. This should be one of the CSV, SQL, Excel,
Sparql or Parquet.

• query (str) – The query to execute on the database. This is required for SQL and
Sparql databases.

• sheet_name (str) – The sheet name to read from the Excel file. This is optional and
only for Excel databases.

Returns
The data from the database

Return type
pd.DataFrame

load_excel_data(database_uri, sheet_name=None)
Load the local privacy-sensitive data from the database.

Parameters

• database_uri (str) – URI of the excel file, supplied by te node

• sheet_name (str | None) – Sheet name to be read from the excel file. If None, the
first sheet will be read.

Returns
The data from the excel file

Return type
pd.DataFrame

load_parquet_data(database_uri)
Load the local privacy-sensitive data from the database.

Parameters
database_uri (str) – URI of the parquet file, supplied by te node

Returns
The data from the parquet file

Return type
pd.DataFrame

load_sparql_data(database_uri, query)
Load the local privacy-sensitive data from the database.

Parameters

• database_uri (str) – URI of the triplestore, supplied by te node

182 Chapter 4. Index



vantage6

• query (str) – Query to retrieve the data from the triplestore
Returns

The data from the triplestore
Return type

pd.DataFrame

load_sql_data(database_uri, query)
Load the local privacy-sensitive data from the database.

Parameters

• database_uri (str) – URI of the sql database, supplied by te node

• query (str) – Query to retrieve the data from the database
Returns

The data from the database
Return type

pd.DataFrame

vantage6.tools.wrap

load_input(input_file)
Load the input from the input file.

Parameters
input_file (str) – File containing the input

Returns
input_data – Input data for the algorithm

Return type
Any

Raises
DeserializationError – Failed to deserialize input data

wrap_algorithm(log_traceback=True)
Wrap an algorithm module to provide input and output handling for the vantage6 infrastructure.

Data is received in the form of files, whose location should be specified in the following environment variables:
• INPUT_FILE: input arguments for the algorithm. This file should be encoded in JSON format.
• OUTPUT_FILE: location where the results of the algorithm should be stored
• TOKEN_FILE: access token for the vantage6 server REST api
• USER_REQUESTED_DATABASE_LABELS: comma-separated list of database labels that the user requested
• <DB_LABEL>_DATABASE_URI: uri of the each of the databases that the user requested, where <DB_LABEL>

is the label of the database given in USER_REQUESTED_DATABASE_LABELS.
The wrapper expects the input file to be a json file. Any other file format will result in an error.

Parameters

• module (str) – Python module name of the algorithm to wrap.

• log_traceback (bool) – Whether to print the full error message from algorithms or
not, by default False. Algorithm developers should set this to False if the error messages
may contain sensitive information. By default True.

Return type
None

4.10. Function documentation 183



vantage6

vantage6.tools.mock_client

class MockAlgorithmClient(datasets, module, collaboration_id=None, organization_ids=None,
node_ids=None)

The MockAlgorithmClient mimics the behaviour of the AlgorithmClient. It can be used to mock the behaviour
of the AlgorithmClient and its communication with the server.

Parameters

• datasets (list[list[dict]]) – A list that contains the datasets that are used in the
mocked algorithm. The inner list contains the datasets for each organization; the outer
list is for each organization. A single dataset should be described as a dictionary with
the same keys as in a node configuration:

– database: str (path to file or SQL connection string) or pd.DataFrame

– db_type (str, e.g. “csv” or “sql”)

There are also a number of keys that are optional but may be required depending on
the database type: - query: str (required for SQL/Sparql databases) - sheet_name: str
(optional for Excel databases) - preprocessing: dict (optional, see the documentation
for

preprocessing for more information)

Note that if the database is a pandas DataFrame, the type and input_data keys are not
required.

• module (str) – The name of the module that contains the algorithm.

• collaboration_id (int, optional) – Sets the mocked collaboration id to this
value. Defaults to 1.

• organization_ids (list[int], optional) – Set the organization ids to this value.
The first value is used for this organization, the rest for child tasks. Defaults to [0, 1, 2,
..].

• node_ids (list[int], optional) – Set the node ids to this value. The first value
is used for this node, the rest for child tasks. Defaults to [0, 1, 2, . . . ].

class Collaboration(parent)
Collaboration subclient for the MockAlgorithmClient

get(is_encrypted=True)
Get mocked collaboration

Parameters
is_encrypted (bool) – Whether the collaboration is encrypted or not. Default
True.

Returns
A mocked collaboration.

Return type
dict

class Node(parent)
Node subclient for the MockAlgorithmClient

get(is_online=True)
Get mocked node

184 Chapter 4. Index



vantage6

Parameters
is_online (bool) – Whether the node is online or not. Default True.

Returns
A mocked node.

Return type
dict

class Organization(parent)
Organization subclient for the MockAlgorithmClient

get(id_)
Get mocked organization by ID

Parameters
id (int) – The id of the organization.

Returns
A mocked organization.

Return type
dict

list()

Get mocked organizations in the collaboration.

Returns
A list of mocked organizations in the collaboration.

Return type
list[dict]

class Result(parent)
Result subclient for the MockAlgorithmClient

from_task(task_id)
Return the results of the task with the given id.

Parameters
task_id (int) – The id of the task.

Returns
The results of the task.

Return type
list[Any]

get(id_)
Get mocked result by ID

Parameters
id (int) – The id of the result.

Returns
A mocked result.

Return type
Any

class Run(parent)
Run subclient for the MockAlgorithmClient

4.10. Function documentation 185



vantage6

from_task(task_id)
Get mocked runs by task ID

Parameters
task_id (int) – The id of the task.

Returns
A list of mocked runs.

Return type
list[dict]

get(id_)
Get mocked run by ID

Parameters
id (int) – The id of the run.

Returns
A mocked run.

Return type
dict

class SubClient(parent)
Create sub groups of commands using this SubClient

Parameters
parent (MockAlgorithmClient) – The parent client

class Task(parent)
Task subclient for the MockAlgorithmClient

create(input_, organizations, name='mock', description='mock')
Create a new task with the MockProtocol and return the task id.

Parameters

• input (dict) – The input data that is passed to the algorithm. This should at
least contain the key ‘method’ which is the name of the method that should
be called. Other keys depend on the algorithm.

• organizations (list[int]) – A list of organization ids that should run
the algorithm.

• name (str, optional) – The name of the task, by default “mock”

• description (str, optional) – The description of the task, by default
“mock”

Returns
A dictionary with information on the created task.

Return type
task

get(task_id)
Return the task with the given id.

Parameters
task_id (int) – The id of the task.

Returns
The task details.

186 Chapter 4. Index



vantage6

Return type
dict

wait_for_results(task_id, interval=1)
Mock waiting for results - just return the results as tasks are completed synchronously in the mock client.

Parameters

• task_id (int) – ID of the task for which the results should be obtained.

• interval (float) – Interval in seconds between checking for new results. This
is ignored in the mock client but included to match the signature of the Algorithm-
Client.

Returns
List of task results.

Return type
list

vantage6.tools.util

error(msg)
Print an error message to stdout.

Parameters
msg (str) – Error message to be printed

Return type
None

get_env_var(var_name, default=None)
Get the value of an environment variable. Environment variables are encoded by the node so they need to be
decoded here.

Note that this decoding follows the reverse of the encoding in the node: first replace ‘=’ back and then decode
the base32 string.

Parameters

• var_name (str) – Name of the environment variable

• default (str | None) – Default value to return if the environment variable is not
found

Returns
var_value – Value of the environment variable, or default value if not found

Return type
str | None

info(msg)
Print an info message to stdout.

Parameters
msg (str) – Message to be printed

Return type
None

warn(msg)
Print a warning message to stdout.

Parameters
msg (str) – Warning message to be printed

Return type
None

4.10. Function documentation 187



vantage6

4.10.7 Backend common

4.10.7.1 Services resources base

vantage6.backend.common.services_resources.BaseServicesResources

vantage6.backend.common.resource.output_schema.BaseHATEOASModelSchema

vantage6.backend.common.resource.pagination

4.10.8 Common functions (vantage6-common)

This page contains the API reference of the functions in the vantage-common package.

4.10.8.1 vantage6.common.configuration_manager

class Configuration(*args, **kwargs)
Base class to contain a single configuration.

property is_valid: bool

Check if the configuration is valid.
Returns

Whether or not the configuration is valid.

Return type
bool

class ConfigurationManager(conf_class=<class 'vantage6.common.configuration_manager.Configuration'>,
name=None)

Class to maintain valid configuration settings.
Parameters

• conf_class (Configuration) – The class to use for the configuration.

• name (str) – The name of the configuration.
classmethod from_file(path, conf_class=<class

'vantage6.common.configuration_manager.Configuration'>)
Load a configuration from a file.

Parameters

• path (Path | str) – The path to the file to load the configuration from.

• conf_class (Type[Configuration]) – The class to use for the configuration.

Returns
The configuration manager with the configuration.

Return type
ConfigurationManager

Raises
AssertionError – If the name of the configuration could not be extracted from the
file path.

188 Chapter 4. Index



vantage6

get()

Get a configuration from the configuration manager.
Returns

The configuration.

Return type
Configuration

property is_empty: bool

Check if the configuration manager is empty.
Returns

Whether or not the configuration manager is empty.

Return type
bool

load(path)
Load a configuration from a file.

Parameters
path (Path | str) – The path to the file to load the configuration from.

Return type
None

put(config)
Add a configuration to the configuration manager.

Parameters
config (dict) – The configuration to add.

Raises
AssertionError – If the configuration is not valid.

Return type
None

save(path)
Save the configuration to a file.

Parameters
path (Path | str) – The path to the file to save the configuration to.

Return type
None

4.10.8.2 vantage6.common.context

class AppContext(instance_type, instance_name, system_folders=False, config_file=None,
print_log_header=True)

Base class from which to create Node and Server context classes.

INST_CONFIG_MANAGER

alias of ConfigurationManager

classmethod available_configurations(instance_type, system_folders)
Returns a list of configuration managers and a list of paths to configuration files that could not be loaded.

Parameters

• instance_type (InstanceType) – Type of instance that is checked

4.10. Function documentation 189



vantage6

• system_folders (bool) – Use system folders rather than user folders

Returns
A list of configuration managers and a list of paths to configuration files that could not
be loaded.

Return type
list[ConfigurationManager], list[Path]

classmethod config_exists(instance_type, instance_name, system_folders=False)
Check if a config file exists for the given instance type and name.

Parameters

• instance_type (InstanceType) – Type of instance that is checked

• instance_name (str) – Name of the configuration

• system_folders (bool) – Use system folders rather than user folders

Returns
True if the config file exists, False otherwise

Return type
bool

property config_file: Path

Return the path to the configuration file.
Returns

Path to the configuration file

Return type
Path

property config_file_name: str

Return the name of the configuration file.
Returns

Name of the configuration file

Return type
str

static configure_logger(name, level)
Set the logging level of a logger.

Parameters

• name (str) – Name of the logger to configure. If None, the root logger is config-
ured.

• level (str) – Logging level to set. Must be one of ‘debug’, ‘info’, ‘warning’,
‘error’, ‘critical’.

Returns
The logger object and the logging level that was set.

Return type
Tuple[Logger, int]

classmethod find_config_file(instance_type, instance_name, system_folders, config_file=None,
verbose=True)

Find a configuration file.
Parameters

190 Chapter 4. Index



vantage6

• instance_type (InstanceType) – Type of instance that is checked

• instance_name (str) – Name of the configuration

• system_folders (bool) – Use system folders rather than user folders

• config_file (str | None) – Name of the configuration file. If None, the name
of the configuration is used.

• verbose (bool) – Print the directories that are searched for the configuration file.

Returns
Path to the configuration file

Return type
str

Raises
Exception – If the configuration file is not found

classmethod from_external_config_file(path, instance_type, system_folders=False)
Create a new AppContext instance from an external config file.

Parameters

• path (str) – Path to the config file

• instance_type (InstanceType) – Type of instance for which the config file is
used

• system_folders (bool) – Use system folders rather than user folders

Returns
A new AppContext instance

Return type
AppContext

get_data_file(filename)
Return the path to a data file.

Parameters
filename (str) – Name of the data file

Returns
Path to the data file

Return type
str

initialize(instance_type, instance_name, system_folders=False, config_file=None,
print_log_header=True)

Initialize the AppContext instance.
Parameters

• instance_type (str) – ‘server’ or ‘node’

• instance_name (str) – Name of the configuration

• system_folders (bool) – Use system folders rather than user folders

• config_file (str) – Path to a specific config file. If left as None, OS specific
folder will be used to find the configuration file specified by instance_name.

• print_log_header (bool) – Print a banner to the log file.

4.10. Function documentation 191



vantage6

Return type
None

static instance_folders(instance_type, instance_name, system_folders)
Return OS and instance specific folders for storing logs, data and config files.

Parameters

• instance_type (InstanceType) – Type of instance that is checked

• instance_name (str) – Name of the configuration

• system_folders (bool) – Use system folders rather than user folders

Returns
Dictionary with Paths to the folders of the log, data and config files.

Return type
dict

property log_file: Path

Return the path to the log file.
Returns

Path to the log file

Return type
Path

log_file_name(type_)
Return a path to a log file for a given log file type

Parameters
type (str) – The type of log file to return.

Returns
The path to the log file.

Return type
Path

Raises
AssertionError – If the configuration manager is not initialized.

print_log_header()

Print the log file header.
Return type

None

set_folders(instance_type, instance_name, system_folders)
Set the folders where the configuration, data and log files are stored.

Parameters

• instance_type (InstanceType) – Type of instance that is checked

• instance_name (str) – Name of the configuration

• system_folders (bool) – Whether to use system folders rather than user folders

Return type
None

setup_logging()

Setup a basic logging mechanism.

Exits if the log file can’t be created.

192 Chapter 4. Index



vantage6

Return type
None

static type_data_folder(instance_type, system_folders)
Return OS specific data folder.

Parameters

• instance_type (InstanceType) – Type of instance that is checked

• system_folders (bool) – Use system folders rather than user folders

Returns
Path to the data folder

Return type
Path

4.10.8.3 vantage6.common.encryption

Encryption between organizations

Module to provide async encrpytion between organizations. All input and result fields should be encrypted when
communicating to the central server.

All incomming messages (input/results) should be encrypted using the public key of this organization. This way we
can decrypt them using our private key.

In the case we are sending messages (input/results) we need to encrypt it using the public key of the receiving organi-
zation. (retreiving these public keys is outside the scope of this module).

class CryptorBase(*args, **kwargs)
Base class/interface for encryption implementations.

static bytes_to_str(data)
Encode bytes as base64 encoded string.

Parameters
data (bytes) – The data to encode.

Returns
The base64 encoded string.

Return type
str

decrypt_str_to_bytes(data)
Decrypt base64 encoded string data.

Parameters
data (str) – The data to decrypt.

Returns
The decrypted data.

Return type
bytes

encrypt_bytes_to_str(data, pubkey_base64)
Encrypt bytes in data using a (base64 encoded) public key.

Note that the public key is ignored in this base class. If you want to encode your data with a public key,
use the RSACryptor class.

Parameters

4.10. Function documentation 193



vantage6

• data (bytes) – The data to encrypt.

• pubkey_base64 (str) – The public key to use for encryption. This is ignored in
this base class.

Returns
The encrypted data encoded as base64 string.

Return type
str

static str_to_bytes(data)
Decode base64 encoded string to bytes.

Parameters
data (str) – The base64 encoded string.

Returns
The encoded string converted to bytes.

Return type
bytes

class DummyCryptor(*args, **kwargs)
Does absolutely nothing to encrypt the data.

class RSACryptor(private_key_file)
Wrapper class for the cryptography package.

It loads the private key, and has an interface to encrypt en decrypt messages. If no private key is found, it can
generate one, and store it at the default location. The encrpytion can be done via a public key from another
organization, make sure the key is in the right data-type.

Communication between node and server requires serialization (and deserialization) of the encrypted messages
(which are in bytes). The API can not communicate bytes, therefore a base64 conversion needs to be executed
(and also a utf-8 encoding needs to be applied because of the way python implemented base64). The same goes
for sending and receiving the public_key.

Parameters
private_key_file (Path ) – The path to the private key file.

static create_new_rsa_key(path)
Creates a new RSA key for E2EE.

Parameters
path (Path ) – The path to the private key file.

Returns
The newly created private key.

Return type
RSAPrivateKey

static create_public_key_bytes(private_key)
Create a public key from a private key.

Parameters
private_key (RSAPrivateKey) – The private key to use.

Returns
The public key as bytes.

Return type
bytes

194 Chapter 4. Index



vantage6

decrypt_str_to_bytes(data)
Decrypt base64 encoded string data.

Parameters
data (str) – The data to decrypt.

Returns
The decrypted data.

Return type
bytes

encrypt_bytes_to_str(data, pubkey_base64s)
Encrypt bytes in data using a (base64 encoded) public key.

Parameters

• data (bytes) – The data to encrypt.

• pubkey_base64s (str) – The public key to use for encryption.

Returns
The encrypted data encoded as base64 string.

Return type
str

property public_key_bytes: bytes

Returns the public key bytes from the organization.
Returns

The public key as bytes.

Return type
bytes

property public_key_str: str

Returns a JSON safe public key, used for the API.
Returns

The public key as base64 encoded string.

Return type
str

verify_public_key(pubkey_base64)
Verifies the public key.

Compare a public key with the generated public key from the private key that is stored in this instance. This
is usefull for verifying that the public key stored on the server is derived from the currently used private
key.

Parameters
pubkey_base64 (str) – The public key to verify as returned from the server.

Returns
True if the public key is valid, False otherwise.

Return type
bool

4.10. Function documentation 195



vantage6

4.10.8.4 vantage6.common

class ClickLogger

“Logs output to the click interface.

static debug(msg)
Print a debug message to the click interface.

Parameters
msg (str) – The message to print.

Return type
None

static error(msg)
Print an error message to the click interface.

Parameters
msg (str) – The message to print.

Return type
None

static info(msg)
Print an info message to the click interface.

Parameters
msg (str) – The message to print.

Return type
None

static warn(msg)
Print a warning message to the click interface.

Parameters
msg (str) – The message to print.

Return type
None

class Singleton

Singleton metaclass. It allows us to create just a single instance of a class to which it is the metaclass.

class WhoAmI(type_: str, id_: int, name: str, organization_name: str, organization_id: int)
Data-class to store Authenticatable information in.

Variables

• type (str) – The type of the authenticatable (user or node).

• id (int) – The id of the authenticatable.

• name (str) – The name of the authenticatable.

• organization_name (str) – The name of the organization of the authenticatable.

• organization_id (int) – The id of the organization of the authenticatable.
id_: int

Alias for field number 1

name: str

Alias for field number 2

196 Chapter 4. Index



vantage6

organization_id: int

Alias for field number 4

organization_name: str

Alias for field number 3

type_: str

Alias for field number 0

base64s_to_bytes(bytes_string)
Convert base64 encoded string to bytes.

Parameters
bytes_string (str) – The base64 encoded string.

Returns
The encoded string converted to bytes.

Return type
bytes

bytes_to_base64s(bytes_)
Convert bytes into base64 encoded string.

Parameters
bytes (bytes) – The bytes to convert.

Returns
The base64 encoded string.

Return type
str

check_config_writeable(system_folders=False)
Check if the user has write permissions to create the configuration file.

Parameters
system_folders (bool) – Whether to check the system folders or the user folders.

Returns
Whether the user has write permissions to create the configuration file or not.

Return type
bool

debug(msg)
Print a debug message to the CLI.

Parameters
msg (str) – The message to print.

Return type
None

echo(msg, level='info')
Print a message to the CLI.

Parameters

• msg (str) – The message to print.

• level (str) – The level of the message. Can be one of: “error”, “warn”, “info”, “de-
bug”.

Return type
None

error(msg)
Print an error message to the CLI.

4.10. Function documentation 197



vantage6

Parameters
msg (str) – The message to print.

Return type
None

generate_apikey()

Creates random api_key using uuid.
Returns

api_key
Return type

str

get_config_path(dirs, system_folders=False)
Get the path to the configuration directory.

Parameters

• dirs (appdirs.AppDirs) – The appdirs object.

• system_folders (bool) – Whether to get path to the system folders or the user folders.
Returns

The path to the configuration directory.
Return type

str

get_database_config(databases, label)
Get database configuration from config file

Parameters

• databases (list[dict]) – List of database configurations

• label (str) – Label of database configuration to retrieve
Returns

Database configuration, or None if not found
Return type

Dict | None

info(msg)
Print an info message to the CLI.

Parameters
msg (str) – The message to print.

Return type
None

is_ip_address(ip)
Test if input IP address is a valid IP address

Parameters
ip (str) – IP address to validate

Returns
bool

Return type
whether or not IP address is valid

logger_name(special__name__)
Return the name of the logger.

Parameters
special__name__ (str) – The __name__ variable of a module.

Returns
The name of the logger.

198 Chapter 4. Index



vantage6

Return type
str

warning(msg)
Print a warning message to the CLI.

Parameters
msg (str) – The message to print.

Return type
None

4.10.8.5 vantage6.common.docker.addons

class ContainerKillListener

Listen for signals that the docker container should be shut down

exit_gracefully(*args)
Set kill_now to True. This will trigger the container to stop

Return type
None

check_docker_running()

Check if docker engine is running. If not, exit the program.
Return type

None

delete_network(network, kill_containers=True)
Delete network and optionally its containers

Parameters

• network (Network) – Network to delete

• kill_containers (bool) – Whether to kill the containers in the network (otherwise
they are merely disconnected)

Return type
None

delete_volume_if_exists(client, volume_name)
Delete a volume if it exists

Parameters

• client (docker.DockerClient) – Docker client

• volume (Volume) – Volume to delete
Return type

None

get_container(docker_client, **filters)
Return container if it exists after searching using kwargs

Parameters

• docker_client (DockerClient) – Python docker client

• **filters – These are arguments that will be passed to the client.container.list() func-
tion. They should yield 0 or 1 containers as result (e.g. name=’something’)

Returns
Container if it exists, else None

Return type
Container or None

4.10. Function documentation 199



vantage6

get_network(docker_client, **filters)
Return network if it exists after searching using kwargs

Parameters

• docker_client (DockerClient) – Python docker client

• **filters – These are arguments that will be passed to the client.network.list() func-
tion. They should yield 0 or 1 networks as result (e.g. name=’something’)

Returns
Container if it exists, else None

Return type
Container or None

get_networks_of_container(container)
Get list of networks the container is in

Parameters
container (Container) – The container in which we are interested

Returns
Describes container’s networks and their properties

Return type
dict

get_num_nonempty_networks(container)
Get number of networks the container is in where it is not the only one

Parameters
container (Container) – The container in which we are interested

Returns
Number of networks in which the container resides in which there are also other containers

Return type
int

get_server_config_name(container_name, scope)
Get the configuration name of a server from its docker container name

Docker container name of the server is formatted as f”{APPNAME}-{self.name}-{self.scope}-server”. This
will return {self.name}

Parameters

• container_name (str) – Name of the docker container in which the server is running

• scope (str) – Scope of the server (e.g. ‘system’ or ‘user’)
Returns

A server’s configuration name
Return type

str

pull_image(docker_client, image)
Pull a docker image

Parameters

• docker_client (DockerClient) – A Docker client

• image (str) – Name of the image to pull
Raises

docker.errors.APIError – If the image could not be pulled
Return type

None

200 Chapter 4. Index



vantage6

remove_container(container, kill=False)
Removes a docker container

Parameters

• container (Container) – The container that should be removed

• kill (bool) – Whether or not container should be killed before it is removed
Return type

None

remove_container_if_exists(docker_client, **filters)
Kill and remove a docker container if it exists

Parameters

• docker_client (DockerClient) – A Docker client

• **filters – These are arguments that will be passed to the client.container.list() func-
tion. They should yield 0 or 1 containers as result (e.g. name=’something’)

Return type
None

running_in_docker()

Check if this code is executed within a Docker container.
Returns

True if the code is executed within a Docker container, False otherwise
Return type

bool

stop_container(container, force=False)
Stop a docker container

Parameters

• container (Container) – The container that should be stopped

• force (bool) – Whether to kill the container or if not, try to stop it gently

4.10.8.6 vantage6.common.docker.network_manager

class NetworkManager(network_name)
Handle a Docker network

connect(container_name, aliases=None, ipv4=None)
Connect a container to the network.

Parameters

• container_name (str) – Name of the container that should be connected to the
network

• aliases (list[str]) – A list of aliases for the container in the network

• ipv4 (str | None) – An IP address to assign to the container in the network

Return type
None

contains(container)
Whether or not this network contains a certain container

Parameters
container (Container) – container to look for in network

4.10. Function documentation 201



vantage6

Returns
Whether or not container is in the network

Return type
bool

create_network(is_internal=True)
Creates an internal (docker) network

Used by algorithm containers to communicate with the node API.
Parameters

is_internal (bool) – True if network should only be able to communicate internally

Return type
None

delete(kill_containers=True)
Delete network

Parameters
kill_containers (bool) – If true, kill and remove any containers in the network

Return type
None

disconnect(container_name)
Disconnect a container from the network.

Parameters
container – Name of the container to disconnect

Return type
None

get_container_ip(container_name)
Get IP address of a container in the network

Parameters
container_name (str) – Name of the container whose IP address is sought

Returns
IP address of the container in the network

Return type
str

remove_subnet_mask(ip)
Remove the subnet mask of an ip address, e.g. 172.1.0.0/16 -> 172.1.0.0

Parameters
ip (str) – IP subnet, potentially including a mask

Returns
IP subnet address without the subnet mask

Return type
str

202 Chapter 4. Index



vantage6

4.10.8.7 vantage6.common.task_status

class TaskStatus(value)
Enum to represent the status of a task

has_task_failed(status)
Check if task has failed to run to completion

Parameters
status (TaskStatus | str) – The status of the task

Returns
True if task has failed, False otherwise

Return type
bool

has_task_finished(status)
Check if task has finished or crashed

Parameters
status (TaskStatus | str) – The status of the task

Returns
True if task has finished or failed, False otherwise

Return type
bool

4.10.8.8 vantage6.common.colors

ColorStreamHandler

alias of _AnsiColorStreamHandler

class _AnsiColorStreamHandler(stream=None)
Handler for logging colors to a stream, for example sys.stderr or sys.stdout.

This handler is used for non-Windows systems.

classmethod _get_color(level)
Define which color to print for each log level.

Parameters
level (int) – The log level.

Returns
The color to print.

Return type
str

format(record)
Format the log record.

Parameters
record (logging.LogRecord) – The log record to format.

Returns
The formatted log record.

Return type
str

4.10. Function documentation 203



vantage6

class _WinColorStreamHandler(stream=None)
Color stream handler for Windows systems.

classmethod _get_color(level)
Define which color to print for each log level.

Parameters
level (int) – The log level.

Returns
The color to print.

Return type
str

emit(record)
Write a log record to the stream.

Parameters
record (logging.LogRecord) – The log record to write.

Return type
None

4.10.8.9 vantage6.common.exceptions

exception AuthenticationException

Exception to indicate authentication has failed

4.11 Glossary

The following is a list of definitions used in vantage6.

A

• Autonomy: the ability of a party to be in charge of the control and management of its own data.

C

• Collaboration: an agreement between two or more parties to participate in a study (i.e., to answer a research
question).

D

• Distributed learning: see Federated Learning

• Docker: a platform that uses operating system virtualization to deliver software in packages called containers.
It is worth noting that although they are often confused, Docker containers are not virtual machines.

• Data Station: Virtual Machine containing the vantage6-node application and a database.

F

• FAIR data: data that are Findable, Accessible, Interoperable, and Reusable. For more information, see the
original paper.

• Federated learning: an approach for analyzing data that are spread across different parties. Its main idea is
that parties run computations on their local data, yielding either aggregated parameters or encrypted values.
These are then shared to generate a global (statistical) model. In other words, instead of bringing the data to the
algorithms, federated learning brings the algorithms to the data. This way, patient-sensitive information is not
disclosed. Federated learning is some times known as distributed learning. However, we try to avoid this term,

204 Chapter 4. Index

https://www.docker.com/blog/containers-are-not-vms/
https://www.nature.com/articles/sdata201618.pdf?origin=ppub
https://www.nature.com/articles/sdata201618.pdf?origin=ppub


vantage6

since it can be confused with distributed computing, where different computers share their processing power to
solve very complex calculations.

H

• Heterogeneity: the condition in which in a federated learning scenario, parties are allowed to have differences
in hardware and software (i.e., operating systems).

• Horizontally-partitioned data: data spread across different parties where the latter have the same features of
different instances (i.e., patients). See also vertically-partitioned data.

Fig. 4.9: Horizontally-partitioned data

N

• Node: vantage6 node application that runs at a Data Station which has access to the local data.

M

• Multi-party computation: an approach to perform analyses across different parties by performing operations
on encrypted data.

P

• Party: an entity that takes part in one (or more) collaborations

• Python: a high-level general purpose programming language. It aims to help programmers write clear, logical
code. vantage6 is written in Python.

4.11. Glossary 205

https://github.com/vantage6/vantage6


vantage6

S

• Secure multi-party computation: see Multi-party computation

• Server: Public access point of the vantage6 infrastructure. Contains at least the vantage6-server application
but can also host the optional components: Docker registry, VPN server and RabbitMQ. In this documentation
space we try to be explicit when we talk about server and vantage6 server, however you might encounter server
where vantage6 server should have been.

V

• vantage6: priVAcy preserviNg federaTed leArninG infrastructurE for Secure Insight eXchange. In short, van-
tage6 is an infrastructure for executing federated learning analyses. However, it can also be used as a FAIR data
station and as a model repository.

• Vertically-partitioned data: data spread across different parties where the latter have different features of the
same instances (i.e., patients). See also horizontally-partitioned data.

Fig. 4.10: Vertically partitioned data

206 Chapter 4. Index



vantage6

4.12 Release notes

4.12.1 4.4.0

15 April 2024

• Feature

• Added visualization of a results table to the UI. The algorithm store is used to store how the table should be
visualized. (Issue#1057, PR#1195).

• Support for more types of algorithm arguments via the UI: lists of strings, ints, floats and columns, and booleans
(Issue#1119, PR#1190).

• Added configuration option to link algorithm stores to a server via the server configuration (PR#1156).

• Added a bunch of custom exceptions for algorithms to the algorithm tools (Issue#1185, PR#1205).

• Decoding the environment variables automatically in the algorithm wrapper, to prevent that a user has to decode
them manually (Issue#1056, PR#1197).

• Add option to delete roles in the UI (Issue#1113, PR#1199).

• Add option to register a node in the UI after creating/editing the collaboration (Issue#1122, PR#1202).

• Change

• Updated idna dependency

• Bugfix

• Do not mark algorithm runs as killed if they were completed before the user killed the task to which the runs
belong (Issue#1045, PR#1204).

• Fix UI code in a few places where pagination was not implemented properly (Issue#1126, PR#1203).

4.12.2 4.3.4

09 April 2024

• Security

• Updated express dependency in UI to 4.19.2

• Feature

• Added option to add hostname mappings in the node configuration (Issue#1094, PR#1167).

• Change

• Always pull new Docker images instead of checking timestamps and only pulling image if the remote image is
newer (Issue#1188, Issue#1105, PR#1169).

• Changed behaviour of v6 algorithm update to skip previously-answered questions by default, and added
flag that allows changing them. Also added flag to allow using a Python script in the updated copier template
(PR#1176).

• Bugfix

• Fix encoding of non-string algorithm environment variables by casting them to string (PR#1186).

• Fix bug in algorithm client: only send study ID when it is defined (PR#1184).

• Update copier dependency which was causing a CLI error (PR#1187).

4.12. Release notes 207

https://github.com/vantage6/vantage6/issues/1057
https://github.com/vantage6/vantage6/pull/1195
https://github.com/vantage6/vantage6/issues/1119
https://github.com/vantage6/vantage6/pull/1190
https://github.com/vantage6/vantage6/pull/1156
https://github.com/vantage6/vantage6/issues/1185
https://github.com/vantage6/vantage6/pull/1205
https://github.com/vantage6/vantage6/issues/1056
https://github.com/vantage6/vantage6/pull/1197
https://github.com/vantage6/vantage6/issues/1113
https://github.com/vantage6/vantage6/pull/1199
https://github.com/vantage6/vantage6/issues/1122
https://github.com/vantage6/vantage6/pull/1202
https://github.com/vantage6/vantage6/issues/1045
https://github.com/vantage6/vantage6/pull/1204
https://github.com/vantage6/vantage6/issues/1126
https://github.com/vantage6/vantage6/pull/1203
https://github.com/vantage6/vantage6/issues/1094
https://github.com/vantage6/vantage6/pull/1167
https://github.com/vantage6/vantage6/issues/1188
https://github.com/vantage6/vantage6/issues/1105
https://github.com/vantage6/vantage6/pull/1189
https://github.com/vantage6/vantage6/pull/1176
https://github.com/vantage6/vantage6/pull/1186
https://github.com/vantage6/vantage6/pull/1184
https://github.com/vantage6/vantage6/pull/1187


vantage6

4.12.3 4.3.3

25 March 2024

• Change

• Improved integration algorithm store in UI (PR#1163).

• Improve picking an online node when creating task in the UI: pick one that shares configuration and give more
specific information to the user in case certain data could not be retrieved (PR#1164).

• UI dependency updates

• Bugfix

• Fix pulling algorithms from registries that require authentication (Issue#1168, PR#1169).

• Fix bug in showing create task button in UI (PR#1165).

• Could not view studies with collaboration scope permissions (Issue#1154, PR#1157).

• Fix bug when viewing algorithm stores with organization scope permissions (PR#1159).

• Detect whitelisted server in algorithm store if port 443 or 80 at the end of the URL is the only difference with
the whitelisted URL (Issue#1155, PR#1162).

• Better error message in Python client when trying to send requests to algorithm store when it has not yet been
set up (Issue#1134, PR#1158).

4.12.4 4.3.2

20 March 2024

• Change

• Integrated user interface in main repository PR#1112).

• Bugfix

• Allow usernames to contain dots and don’t apply username validation to login endpoints until v5 to allow existing
users to login (PR#1148).

4.12.5 4.3.1

18 March 2024

• Feature

• New configuration option to set a server name in the server configuration file, which will be used to identify the
server in a two-factor app. (Issue#1016, PR#1075).

• Change

• Allow user with organization scope permission to view studies to retrieve studies for a particular collaboration,
even though they may not be able to view them all (PR#1104).

• Add option to set policies on openness of algorithm viewing in algorithm store to configuration wizard
(PR#1106).

• Improved help text in UI in several places and show the username in the top right (PR#254, PR#257)

• Bugfix

208 Chapter 4. Index

https://github.com/vantage6/vantage6/pull/1163
https://github.com/vantage6/vantage6/pull/1164
https://github.com/vantage6/vantage6/issues/1168
https://github.com/vantage6/vantage6/pull/1169
https://github.com/vantage6/vantage6/pull/1165
https://github.com/vantage6/vantage6/issues/1154
https://github.com/vantage6/vantage6/pull/1157
https://github.com/vantage6/vantage6/pull/1159
https://github.com/vantage6/vantage6/issues/1155
https://github.com/vantage6/vantage6/pull/1162
https://github.com/vantage6/vantage6/issues/1153
https://github.com/vantage6/vantage6/pull/1158
https://github.com/vantage6/vantage6/pull/1112
https://github.com/vantage6/vantage6/pull/1148
https://github.com/vantage6/vantage6/issues/1016
https://github.com/vantage6/vantage6/pull/1075
https://github.com/vantage6/vantage6/pull/1104
https://github.com/vantage6/vantage6/pull/1106
https://github.com/vantage6/vantage6-UI/pull/254
https://github.com/vantage6/vantage6-UI/pull/257


vantage6

• Update default roles on server startup if they have changed. This may happen on minor version updates (Is-
sue#1102, PR#1103).

• Update selected collaboration in the UI when it is updated in the administration section (PR#253)

• Fix showing the create task button if user has no global permissions (PR#259)

• Remove wrong message for CORS not functioning properly with default settings (PR#1107).

4.12.6 4.3.0

12 March 2024

• Security

• Implemented configuration option to set CORS origins on the central server. This may be used to further enhance
the security profile of your server (advisory, commit).

• Prevent username enumeration attack on endpoints where password and 2FA are reset (advisory, commit).

• Added HTTP security headers on the user interface to provide an additional layer of security to help mitigate
attacks and vulnerabilites (advisory, commit).

• Updated cryptography dependency

• Feature

• New user interface. The new UI is a complete rewrite of the old UI and is more focused on facilitating the
researcher in running tasks and viewing their progress and results (PR#930).

• New infrastructure component: the algorithm store. The algorithm store is a place to make algorithms easily
findable and easier to run. Algorithm stores can be made available to specific collaborations or to all collabo-
rations in an entire vantage6 server. By doing so, the new UI will automatically pick up these algorithms and
guide the user through running analyses with them ( Issue#911, PR#1048 and several other PRs)

• Introducing ‘study’ concept. A study is essentially a ‘sub-collaboration’, where a subset of organizations of
the collaboration can work together on a specific research question. Tasks and results are then easily grouped
together for the study (Issue#812, PR#1069).

• Add flag whether role is default or not (Issue#949, PR#1063).

• Report username/password combination at the end of the logs when it is created (Issue#830, PR#1041).

• Change

• Introducing new package vantage6-backend-common for code that is shared between the central server and
the algorithm store (Issue#979, PR#1037).

• Show the default values for CLI commands when displaying the help text (Issue#1000, PR#1070).

• Setting the allowed algorithms is now part of the questionnaire on node setup (PR#1046).

• Usernames are now required to be at least three characters long and contain only roman letters, numbers, and the
characters ‘_’ and ‘-’ (PR#1060).

• Remove OMOP wrapper since we now have specific connectors to connect to this database type and wrapper
was therefore not used (Issue#1002, PR#1067).

• v6 node commands no longer require full path when using the --config option (Issue#870, PR#1042).

• Apply black code formatting to the entire repository (Issue#968, PR#1012).

• Remove option to update organization or collaboration of an existing node. Preferred workflow in that case is to
delete and re-create it. Also add option clear_ip to clear the VPN IP address of the node (PR#1053).

4.12. Release notes 209

https://github.com/vantage6/vantage6/issues/1102
https://github.com/vantage6/vantage6/issues/1102
https://github.com/vantage6/vantage6/pull/1103
https://github.com/vantage6/vantage6-UI/pull/253
https://github.com/vantage6/vantage6-UI/pull/259
https://github.com/vantage6/vantage6/pull/1107
https://github.com/vantage6/vantage6/security/advisories/GHSA-4946-85pr-fvxh
https://github.com/vantage6/vantage6/commit/70bb4e1d889230a841eb364d6c03accd7dd01a41
https://github.com/vantage6/vantage6/security/advisories/GHSA-5h3x-6gwf-73jm
https://github.com/vantage6/vantage6/commit/aecfd6d0e83165a41a60ebd52d2287b0217be26b
https://github.com/vantage6/vantage6-UI/security/advisories/GHSA-gwq3-pvwq-4c9w
https://github.com/vantage6/vantage6-UI/commit/68dfa661415182da0e5717bd58db3d00aedcbd2e
https://github.com/vantage6/vantage6-UI/pull/246
https://github.com/vantage6/vantage6/issues/911
https://github.com/vantage6/vantage6/pull/1004
https://github.com/vantage6/vantage6/issues/812
https://github.com/vantage6/vantage6/pull/1069
https://github.com/vantage6/vantage6/issues/949
https://github.com/vantage6/vantage6/pull/1063
https://github.com/vantage6/vantage6/issues/830
https://github.com/vantage6/vantage6/pull/1041
https://github.com/vantage6/vantage6/issues/979
https://github.com/vantage6/vantage6/pull/1037
https://github.com/vantage6/vantage6/issues/1000
https://github.com/vantage6/vantage6/pull/1070
https://github.com/vantage6/vantage6/pull/1046
https://github.com/vantage6/vantage6/pull/1060
https://github.com/vantage6/vantage6/issues/1002
https://github.com/vantage6/vantage6/pull/1067
https://github.com/vantage6/vantage6/issues/870
https://github.com/vantage6/vantage6/pull/1042
https://github.com/vantage6/vantage6/issues/968
https://github.com/vantage6/vantage6/pull/1012
https://github.com/vantage6/vantage6/pull/1053


vantage6

• Bugfix

• Fix VPN network cleanup if iptables-legacy is installed, and improve cleanup of the node’s containers,
volumes and networks when the node is stopped (Issue#1058, PR#1059).

• Prevent logger thread to crash on input that it cannot read (Issue#879, PR#1043).

• Fixed setting up VPN network on Ubuntu 22.04 (Issue#724, PR#1044).

4.12.7 4.2.3

21 February 2024

• Security

– Updated cryptography dependency to version 42.0.2 (PR#1047, PR#1048).

• Feature

– Added the option to specify a private key file when using the v6 test feature-test command (Is-
sue#1018, PR#1019).

• Bugfix

– Using the whitelisting feature without VPN prevented algorithm containers from starting (PR#1055)

– Shutting down the node did not properly remove all containers, volumes and networks (PR#1059).

4.12.8 4.2.2

26 January 2024

• Feature

• Configuration options for the node to add extra mounts and extra environment variables for the node itself (Is-
sue#961, PR#963).

• Change

• The entire repository is now formatted with Black code style. Additionally, a pipeline was added to check this
for new PRs and commit hooks are provided for developers (PR#992).

• When the PKG_NAME environeent variable was not set in the Dockerfile, a clear error is now raised (Issue#995,
PR#1010).

• Bugfix

• Running encrypted algorithms failed due to a bug in the proxy server (Issue#955, PR#1008).

• Node logs were not persisted properly. This has been fixed (Issue#993, PR#1009).

210 Chapter 4. Index

https://github.com/vantage6/vantage6/issues/1058
https://github.com/vantage6/vantage6/pull/1059
https://github.com/vantage6/vantage6/issues/879
https://github.com/vantage6/vantage6/pull/1043
https://github.com/vantage6/vantage6/issues/724
https://github.com/vantage6/vantage6/pull/1044
https://github.com/vantage6/vantage6/pull/1047
https://github.com/vantage6/vantage6/pull/1048
https://github.com/vantage6/vantage6/issues/1018
https://github.com/vantage6/vantage6/issues/1018
https://github.com/vantage6/vantage6/pull/1019
https://github.com/vantage6/vantage6/pull/1055
https://github.com/vantage6/vantage6/pull/1059
https://github.com/vantage6/vantage6/issues/961
https://github.com/vantage6/vantage6/issues/961
https://github.com/vantage6/vantage6/pull/963
https://github.com/vantage6/vantage6/pull/992
https://github.com/vantage6/vantage6/issues/995
https://github.com/vantage6/vantage6/pull/1010
https://github.com/vantage6/vantage6/issues/955
https://github.com/vantage6/vantage6/pull/1008
https://github.com/vantage6/vantage6/issues/993
https://github.com/vantage6/vantage6/pull/1009


vantage6

4.12.9 4.2.1

19 January 2024

• Bugfix

• Add back binary installation of psycopg2 to support Postgres databases (PR#932).

4.12.10 4.2.0

18 January 2024

• Security

• Remove option to SSH into node and server containers. The configuration was not completely secure (advisory,
commit).

• Prevent code injection into environment variables (advisory, commit).

• Prevent that user can accidentally upload non-encrypted input to the server for an encrypted collaboration. (ad-
visory, commit).

• Prevent that usernames are findable in brute force attack due to a difference in response time when they exist
versus when they don’t exist (advisory, commit).

• Updated dependencies of jinja2, cryptography and Werkzeug. ( PR#984).

• Feature

• Introduced the v6 test commands that will run the test algorithm v6-diagnostics (Issue#918, PR#930).

• Extended v6 dev commands with options to add extra configuration to the server and node configuration files.
Also, added the v6 server remove command. (Issue#860, PR#930).

• Change

• Changed some log messages to a more appropriate log level (Issue#667)

• Improved message when node starts so as to make it clearer to users that the node has not yet authenticated
(PR#957).

• Changed socket event on_new_task to also include the parent ID of the task that was created (PR#950).

• Bugfix

• Added check whether database labels are properly specified when creating a task (Issue#910, PR#932).

• Fix bug in creating task with VPN client image when it has iptables-legacy installed (Issue#966, PR#982).

• Add missing email argument from client.user.create function (Issue#837, PR#934).

4.12.11 4.1.3

19 December 2023

• Bugfix

• Server logs were not persisted properly (Issue#951, PR#953).

• Fixed validation of request to recover two-factor authentication secret (PR#941).

• Default roles were visible via GET /role but not via GET /role/<id> for users without global role view
permission. Now they are visible via both (PR#948).

4.12. Release notes 211

https://github.com/vantage6/vantage6/pull/932
https://github.com/vantage6/vantage6/security/advisories/GHSA-2wgc-48g2-cj5w
https://github.com/vantage6/vantage6/commit/3fcc6e6a8bd1142fd7a558d8fdd2b246e55c8841
https://github.com/vantage6/vantage6/security/advisories/GHSA-w9h2-px87-74vx
https://github.com/vantage6/vantage6/commit/eac19db737145d3ca987adf037a454fae0790ddd
https://github.com/vantage6/vantage6/security/advisories/GHSA-rjmv-52mp-gjrr
https://github.com/vantage6/vantage6/security/advisories/GHSA-rjmv-52mp-gjrr
https://github.com/vantage6/vantage6/commit/6383283733b81abfcacfec7538dc4dc882e98074
https://github.com/vantage6/vantage6/security/advisories/GHSA-45gq-q4xh-cp53
https://github.com/vantage6/vantage6/commit/389f416c445da4f2438c72f34c3b1084485c4e30
https://github.com/vantage6/vantage6/pull/984
https://github.com/vantage6/vantage6/issues/918
https://github.com/vantage6/vantage6/pull/930
https://github.com/vantage6/vantage6/issues/860
https://github.com/vantage6/vantage6/pull/930
https://github.com/vantage6/vantage6/issues/667
https://github.com/vantage6/vantage6/pull/957
https://github.com/vantage6/vantage6/pull/950
https://github.com/vantage6/vantage6/issues/910
https://github.com/vantage6/vantage6/pull/932
https://github.com/vantage6/vantage6/issues/966
https://github.com/vantage6/vantage6/pull/982
https://github.com/vantage6/vantage6/issues/837
https://github.com/vantage6/vantage6/pull/934
https://github.com/vantage6/vantage6/issues/951
https://github.com/vantage6/vantage6/pull/953
https://github.com/vantage6/vantage6/pull/941
https://github.com/vantage6/vantage6/pull/948


vantage6

4.12.12 4.1.2

14 November 2023

• Security

• Improved check which algorithms are allowed - no longer trusting an algorithm with a parent_id by default (
advisory, commit).

4.12.13 4.1.1

1 November 2023

• Bugfix

• Added OpenPyxl dependency to algorithm tools which is required to read Excel databases (PR#923).

• Explicitly define the resource on which sorting is done in the API. This prevents SQL errors when SQLAlchemy
tries to sort on a column in a joined table (PR#925).

• Fixed retrieving column names for Excel databases (PR#924).

4.12.14 4.1.0

19 October 2023

• Feature

• Renamed CLI commands. The new commands are:

– vnode→ v6 node

– vserver→ v6 server

– vdev→ v6 dev

The old commands will still be available until version 5.0 is released.

• Added CLI command v6 algorithm create which is a starting point for creating new algorithms (Issue#400,
PR#904).

• Added @database_connection(type_) algorithm decorator. This enables algorithm developers to inject a
database connection into their algorithm instead of a dataframe. The only type that currently is support is omop,
which injects a OHDSI/DatabaseConnection object into your algorithm. (PR#902).

• Added endpoint /column for the UI to get the column names of the database. This is achieved either by sharing
column names by the node for file-based databases or by sending a task using the basics algorithm. The latter
is now an allowed algorithm by default, unless the node is configured to not allow it. ((Issue#778, PR#908).

• Added only_siblings and only_self options to the client.vpn.get_addresses function. These options
allow you to get the VPN addresses of only the siblings or only the node itself, respectively. This is useful for
algorithms that need to communicate with other algorithms on the same node or with the node itself. (Issue#729,
PR#901).

212 Chapter 4. Index

https://github.com/vantage6/vantage6/security/advisories/GHSA-vc3v-ppc7-v486
https://github.com/vantage6/vantage6/commit/92159580f11a17cd2e06f73f636088bbcbfe9cbc
https://github.com/vantage6/vantage6/pull/923
https://github.com/vantage6/vantage6/pull/925
https://github.com/vantage6/vantage6/pull/924
https://github.com/vantage6/vantage6/issues/400
https://github.com/vantage6/vantage6/pull/904
https://github.com/vantage6/vantage6/pull/902
https://github.com/vantage6/vantage6/issues/778
https://github.com/vantage6/vantage6/pull/908
https://github.com/vantage6/vantage6/issues/729
https://github.com/vantage6/vantage6/pull/901


vantage6

4.12.15 4.0.3

16 October 2023

• Bugfix

• Fix where custom Docker image for node was defined in config file but not used in practice (PR#896).

• Fixed getting VPN algorithm addresses from AlgorithmClient (PR#898).

4.12.16 4.0.2

9 October 2023

• Bugfix

• Fix socket connection from node to server due to faulty callback, which occurred when server was deployed.
This bug was introduced in v4.0.1 (PR#892).

4.12.17 4.0.1

5 October 2023

• Security

• Updating dependencies cryptography, gevent, and urllib3 to fix vulnerabilities (PR#889)

• Bugfix

• Fix node connection issues if server without constant JWT secret key is restarted (Issue#840, PR#866).

• Improved algorithm_client decorator with @wraps decorator. This fixes an issue with the data decorator in the
AlgorithmMockClient (Issue#874, PR#882).

• Decoding the algorithm results and algorithm input has been made more robust, and input from vserver
import is now properly encoded (Issue#836, PR#864).

• Improve error message if user forgot to specify databases when creating a task (Issue#854, PR#865).

• Fix data loading in AlgorithmMockClient (Issue#872, PR#881).

4.12.18 4.0.0

20 September 2023

• Security

• No longer using Python pickles for serialization and deserialization of algorithm results. Using JSON instead (
CVE#CVE-2023-23930, commit).

• Not allowing resources to have an integer name ( CVE#CVE-2023-28635, PR#744).

• Users allowed to view collaborations but not allowed to view tasks may be able to view them via /api/
collaboration/<id>/task ( CVE#CVE-2023-41882, PR#741).

• Users allowed to view tasks but not results may be able to view them via /api/task?include=results (
CVE#CVE-2023-41882, PR#711).

• Deleting all linked tasks when a collaboration is deleted ( CVE#CVE-2023-41881, PR#748).

• Feature

4.12. Release notes 213

https://github.com/vantage6/vantage6/pull/896
https://github.com/vantage6/vantage6/pull/898
https://github.com/vantage6/vantage6/pull/892
https://github.com/vantage6/vantage6/pull/889
https://github.com/vantage6/vantage6/issues/840
https://github.com/vantage6/vantage6/pull/866
https://github.com/vantage6/vantage6/issues/874
https://github.com/vantage6/vantage6/pull/882
https://github.com/vantage6/vantage6/issues/836
https://github.com/vantage6/vantage6/pull/864
https://github.com/vantage6/vantage6/issues/854
https://github.com/vantage6/vantage6/pull/865
https://github.com/vantage6/vantage6/issues/872
https://github.com/vantage6/vantage6/pull/881
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-23930
https://github.com/vantage6/vantage6/commit/e62f03bacf2247bd59eed217e2e7338c3a01a5f0
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28635
https://github.com/vantage6/vantage6/pull/744
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-41882
https://github.com/vantage6/vantage6/pull/741
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-41882
https://github.com/vantage6/vantage6/pull/711
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-41881
https://github.com/vantage6/vantage6/pull/748


vantage6

• A complete permission scope has been added at the collaboration level, allowing projects to assign one user to
manage everything within that collaboration level without requiring global access (Issue#245, PR#711).

• Added decorators @algorithm_client and @data() to make the signatures and names of algorithm functions
more flexible and also to allow for multiple databases (Issue#440, PR#652).

• Allow a single algorithm function to make use of multiple databases (Issue#804, PR#652, PR#807).

• Enforce pagination in the API to improve performance, and add a sort parameter for GET requests which yield
multiple resources (Issue#392, PR#611).

• Share a node’s database labels and types with the central server, so that the server can validate that these match
between nodes and offer them as suggestions to the user when creating tasks (Issue#750, PR#751).

• vnode new now automatically retrieves information on e.g. whether the collaboration is encrypted, so that the
user doesn’t have to specify this information themselves (Issue#434, PR#739).

• Allow only unique names for organizations, collaborations, and nodes (Issue#242, PR#515).

• New function client.task.wait_for_completion() for the AlgorithmClient to allow waiting for subtasks
to complete (Issue#651, PR#727).

• Improved validation of the input for all POST and PATCH requests using marshmallow schemas (Issue#76,
PR#744).

• Added option user_created to filter tasks that have been directly created by a user and are thus not subtasks
(Issue#583, PR#599).

• Users can now assign rules to other users that they don’t have themselves if they do have higher permisions on
the same resource (Issue#443, PR#781).

• Change

• Changed the API response structure: no longer returning as many linked resources for performance reasons
(Issue#49, PR#709)

• The result endpoint has been renamed to run as this was a misnomer that concerns algorithm runs (Issue#436,
PR#527), PR#620).

• Split the vantage6-client package: the Python user client is kept in this package, and a new vantage6-algorithm-
tools PyPI package is created for the tools that help algorithm developers. These tools were part of the client
package, but moving them reduces the sizes of both packages (Issue#662, PR#763)

• Removed environments test, dev, prod, acc and application from vantage6 servers and nodes as these were used
little (Issue#260, PR#643)

• Harmonized the interfaces between the AlgorithmClient and the MockClient (Issue#669, PR#722)

• When users request resources where they are not allowed to see everything, they now get an unauthorized error
instead of an incomplete or empty response (Issue#635, PR#711).

• Node checks the server’s version and by default, it pulls a matching image instead of the latest image of it’s major
version (Issue#700, PR#706).

• vserver-local commands have been removed if they were not used within the docker images or the CLI
(Issue#663, PR#728).

• The way in which RabbitMQ is started locally has been changed to make it easier to run RabbitMQ locally.
Now, a user indicates with a configuration flag whether they expect RabbitMQ to be started locally (Issue#282,
PR#795).

• The place in which server configuration files were stored on Linux has been changed fro /etc/xdg to /etc/
vantage6/ (Issue#269, PR#789).

214 Chapter 4. Index

https://github.com/vantage6/vantage6/issues/245
https://github.com/vantage6/vantage6/pull/711
https://github.com/vantage6/vantage6/issues/440
https://github.com/vantage6/vantage6/pull/652
https://github.com/vantage6/vantage6/issues/804
https://github.com/vantage6/vantage6/pull/652
https://github.com/vantage6/vantage6/pull/807
https://github.com/vantage6/vantage6/issues/392
https://github.com/vantage6/vantage6/pull/611
https://github.com/vantage6/vantage6/issues/750
https://github.com/vantage6/vantage6/pull/751
https://github.com/vantage6/vantage6/issues/434
https://github.com/vantage6/vantage6/pull/739
https://github.com/vantage6/vantage6/issues/242
https://github.com/vantage6/vantage6/pull/515
https://github.com/vantage6/vantage6/issues/651
https://github.com/vantage6/vantage6/pull/727
https://github.com/vantage6/vantage6/issues/76
https://github.com/vantage6/vantage6/pull/744
https://github.com/vantage6/vantage6/issues/583
https://github.com/vantage6/vantage6/pull/599
https://github.com/vantage6/vantage6/issues/443
https://github.com/vantage6/vantage6/pull/781
https://github.com/vantage6/vantage6/issues/49
https://github.com/vantage6/vantage6/pull/709
https://github.com/vantage6/vantage6/issues/436
https://github.com/vantage6/vantage6/pull/527
https://github.com/vantage6/vantage6/pull/620
https://github.com/vantage6/vantage6/issues/662
https://github.com/vantage6/vantage6/pull/763
https://github.com/vantage6/vantage6/issues/260
https://github.com/vantage6/vantage6/pull/643
https://github.com/vantage6/vantage6/issues/669
https://github.com/vantage6/vantage6/pull/722
https://github.com/vantage6/vantage6/issues/635
https://github.com/vantage6/vantage6/pull/711
https://github.com/vantage6/vantage6/issues/700
https://github.com/vantage6/vantage6/pull/706
https://github.com/vantage6/vantage6/issues/663
https://github.com/vantage6/vantage6/pull/728
https://github.com/vantage6/vantage6/issues/282
https://github.com/vantage6/vantage6/pull/795
https://github.com/vantage6/vantage6/issues/269
https://github.com/vantage6/vantage6/pull/789


vantage6

• Backwards compatibility code that was present to make different v3.x versions compatible has been removed.
Additionally, small improvements have been made that were not possible to do without breaking compatibility
(Issue#454, PR#740, PR#758).

• Bugfix

• Remove wrong dot in the version for prereleases ( PR#764).

• Users were not assigned any permissions if vserver import was run before the server had ever been started (Is-
sue#634, PR#806).

4.12.19 3.11.1

11 September 2023

• Bugfix

• Setting up the host network for VPN did not work properly if the host had iptables-legacy installed rather
than iptables. Now, the code has been made compatible with both (Issue#725, PR#802).

4.12.20 3.11.0

21 August 2023

• Feature

• A suite of vdev commands has been added to the CLI. These commands allow you to easily create a development
environment for vantage6. The commands allow you to easily create a server configuration, add organizations
and collaborations to it, and create the appropriate node configurations. Also, you can easily start, stop, and
remove the network. (Issue#625, PR#624).

• User Interface can now be started from the CLI with vserver start –with-ui (Issue#730, PR#735).

• Added created_at and finished_at timestamps to tasks (Issue#621, PR#715).

• Change

• Help text for the CLI has been updated and the formatting has been improved (Issue#745, PR#791).

• With vnode list, the terms online and offline have been replaced by running and not running. This is more accu-
rate, since a node may be unable to authenticate and thus be offline, but still be running. (Issue#733, PR#734).

• Some legacy code that no longer fulfilled a function has been removed from the endpoint to create tasks (Is-
sue#742, PR#747).

• Bugfix

• In the docs, the example file to import server resources with vserver import was accidentally empty; now it
contains example data. (PR#792).

4.12. Release notes 215

https://github.com/vantage6/vantage6/issues/454
https://github.com/vantage6/vantage6/pull/740
https://github.com/vantage6/vantage6/pull/758
https://github.com/vantage6/vantage6/pull/764
https://github.com/vantage6/vantage6/issues/634
https://github.com/vantage6/vantage6/issues/634
https://github.com/vantage6/vantage6/pull/806
https://github.com/vantage6/vantage6/issues/725
https://github.com/vantage6/vantage6/pull/802
https://github.com/vantage6/vantage6/issues/625
https://github.com/vantage6/vantage6/pull/624
https://github.com/vantage6/vantage6/issues/730
https://github.com/vantage6/vantage6/pull/735
https://github.com/vantage6/vantage6/issues/621
https://github.com/vantage6/vantage6/pull/715
https://github.com/vantage6/vantage6/issues/745
https://github.com/vantage6/vantage6/pull/791
https://github.com/vantage6/vantage6/issues/733
https://github.com/vantage6/vantage6/pull/734
https://github.com/vantage6/vantage6/issues/742
https://github.com/vantage6/vantage6/issues/742
https://github.com/vantage6/vantage6/pull/747
https://github.com/vantage6/vantage6/pull/792


vantage6

4.12.21 3.10.4

27 June 2023

• Change

• Extended the AlgorithmMockClient so that algorithm developers may pass it organization id’s and node id’s
(PR#737).

• Bugfix

• Speed up starting algorithm using VPN ( Issue#681, PR#732).

• Updated VPN configurator Dockerfile so that VPN configuration works on Ubuntu 22 (Issue#724, PR#725).

4.12.22 3.10.3

20 June 2023

• Bugfix

• Fixed bug in copying the MockClient itself to pass it on to a child task ( PR#723).

Note: Release 3.10.2 failed to be published to PyPI due to a gateway error, so that version was skipped.

4.12.23 3.10.1

19 June 2023

• Bugfix

• Fixed bug in setting organization_id for the AlgorithmClient ( Issue#719, PR#720).

4.12.24 3.10.0

19 June 2023

• Feature

• There is a new implementation of a mock client, the MockAlgorithmClient. This client is an improved version
of the old ClientMockProtocol. The new mock client now contains all the same functions as the regular
client with the same signatures, and it returns the same data fields as those functions. Also, you may submit all
supported data formats instead of just CSV files, and you may also submit pandas Dataframes directly (Issue#683,
PR#702).

• Change

• Updated cryptography dependency from 39.0.1 to 41.0.0 (PR#707, PR#708).

• Bugfix

• A node’s VPN IP address was previously only updated when a new task was started on that node. Instead, it is
now updated properly on VPN connect/ disconnect (Issue#520, PR#704).

216 Chapter 4. Index

https://github.com/vantage6/vantage6/pull/737
https://github.com/vantage6/vantage6/issues/681
https://github.com/vantage6/vantage6/pull/732
https://github.com/vantage6/vantage6/issues/724
https://github.com/vantage6/vantage6/pull/725
https://github.com/vantage6/vantage6/pull/723
https://github.com/vantage6/vantage6/issues/719
https://github.com/vantage6/vantage6/pull/720
https://github.com/vantage6/vantage6/issues/683
https://github.com/vantage6/vantage6/pull/702
https://github.com/vantage6/vantage6/pull/707
https://github.com/vantage6/vantage6/pull/708
https://github.com/vantage6/vantage6/issues/520
https://github.com/vantage6/vantage6/pull/704


vantage6

4.12.25 3.9.0

25 May 2023

• Feature

• Data sources may now be whitelisted by IP address, so that an algorithm may access those IP addresses to obtain
data. This is achieved via a Squid proxy server (Issue#162, PR#626).

• There is a new configuration option to let algorithms access gpu’s (Issue#597, PR#623).

• Added option to get VPN IP addresses and ports of just the children or just the parent of an algorithm that is
running. These options may be used to simplify VPN communication between algorithms running on differ-
ent nodes. In the AlgorithmClient, the functions client.vpn.get_child_addresses() and client.vpn.
get_parent_address() have been added (PR#610).

• New option to print the full stack trace of algorithm errors. Note that this option may leak sensitive information
if used carelessly. The option may be activated by setting log_traceback=True in the algorithm wrapper
(Issue#675, PR#680).

• Configuration options to control the log levels of individual dependencies. This allows easier debugging when a
certain dependency is causing issues (Issue#641, PR#642).

• Change

• Better error message for vnode attach when no nodes are running (Issue#606, PR#607).

• The number of characters of the task input printed to the logs is now limited to prevent flooding the logs with
very long input (Issue#549, PR#550).

• Node proxy logs are now written to a separate log file. This makes the main node log more readable (Issue#546,
PR#619).

• Update code in which the version is updated (PR#586).

• Finished standardizing docstrings - note that this was already partially done in earlier releases (Issue#255).

• Cleanup and moving of unused code and duplicate code (PR#571).

• It is now supported to run the release pipeline from release/v<x.y.z> branches (Issue#467, PR#488).

• Replaced deprecated set-output method in Github actions release pipeline (Issue#474, PR#601).

• Bugfix

• Fixed checking for newer images (node, server, and algorithms). Previously, the dates used were not sufficient to
check if an image was newer. Now, we are also checking the image digest (Issue#507, PR#602).

• Users are prevented from posting socket events that are meant for nodes - note that nothing harmful could be
done but it should not be possible nevertheless (Issue#615, PR#616).

• Fixed bug with detecting if database was a file as ‘/mnt/’ was not properly prepended to the file path (PR#691).

4.12. Release notes 217

https://github.com/vantage6/vantage6/issues/162
https://github.com/vantage6/vantage6/pull/626
https://github.com/vantage6/vantage6/issues/597
https://github.com/vantage6/vantage6/pull/623
https://github.com/vantage6/vantage6/pull/610
https://github.com/vantage6/vantage6/issues/675
https://github.com/vantage6/vantage6/pull/680
https://github.com/vantage6/vantage6/issues/641
https://github.com/vantage6/vantage6/pull/642
https://github.com/vantage6/vantage6/issues/606
https://github.com/vantage6/vantage6/pull/607
https://github.com/vantage6/vantage6/issues/549
https://github.com/vantage6/vantage6/pull/550
https://github.com/vantage6/vantage6/issues/546
https://github.com/vantage6/vantage6/pull/619
https://github.com/vantage6/vantage6/pull/586
https://github.com/vantage6/vantage6/issues/255
https://github.com/vantage6/vantage6/pull/571
https://github.com/vantage6/vantage6/issues/467
https://github.com/vantage6/vantage6/pull/488
https://github.com/vantage6/vantage6/issues/474
https://github.com/vantage6/vantage6/pull/601
https://github.com/vantage6/vantage6/issues/507
https://github.com/vantage6/vantage6/pull/602
https://github.com/vantage6/vantage6/issues/615
https://github.com/vantage6/vantage6/pull/616
https://github.com/vantage6/vantage6/pull/691


vantage6

4.12.26 3.8.8

11 May 2023

• Bugfix

– Fixed a bug that prevented the node from shutting down properly (Issue#649, PR#677)

– Fixed a bug where the node did not await the VPN client to be ready (Issue#656, PR#676)

– Fixed database label logging (PR#664)

– Fixed a bug were VPN messages to the originating node where not always sent/received (Issue#671,
PR#673)

– Fixed a bug where an exceptions is raised when the websocket connection was lost and a ping was attempted
to be send (Issue#672, PR#674)

– Fixed a formatting in CLI print statement (PR#661)

– Fixed bug where ‘/mnt/’ was erroneously prepended to non-file based databases (PR#658)

– Fix in autowrapper for algorithms with CSV input (PR#655)

– Fixed a bug in syncing tasks from the server to the node, when the node lost socket connection and then
reconnected (Issue#654, PR#657)

– Fix construction of database URI in vserver files (Issue#650, PR#659)

4.12.27 3.8.7

10 May 2023

• Bugfix

– Socket did connect before Docker was initialized, resulting in an exception at startup (PR#644)

4.12.28 3.8.6

9 May 2023

• Bugfix

– Fixed bug that resulted in broken algorithm networks when the socket connection was lost (PR#640, Is-
sue#637)

4.12.29 3.8.3 - 3.8.5

25 April 2023 - 2 May 2023

• Bugfix

• Fixed bug where a missing container lead to a complete node crash (PR#628, PR#629, PR#632).

• Restored algorithm wrapper namespace for backward compatibility ( PR#618)

• Prevent error with first socket ping on node startup by waiting a few seconds (PR#609)

218 Chapter 4. Index

https://github.com/vantage6/vantage6/issues/649
https://github.com/vantage6/vantage6/pull/677
https://github.com/vantage6/vantage6/issues/656
https://github.com/vantage6/vantage6/pull/676
https://github.com/vantage6/vantage6/pull/664
https://github.com/vantage6/vantage6/issues/671
https://github.com/vantage6/vantage6/pull/673
https://github.com/vantage6/vantage6/issues/672
https://github.com/vantage6/vantage6/pull/674
https://github.com/vantage6/vantage6/pull/661
https://github.com/vantage6/vantage6/pull/658
https://github.com/vantage6/vantage6/pull/655
https://github.com/vantage6/vantage6/issues/654
https://github.com/vantage6/vantage6/pull/657
https://github.com/vantage6/vantage6/issues/650
https://github.com/vantage6/vantage6/pull/659
https://github.com/vantage6/vantage6/pull/644
https://github.com/vantage6/vantage6/pull/640
https://github.com/vantage6/vantage6/issues/637
https://github.com/vantage6/vantage6/issues/637
https://github.com/vantage6/vantage6/pull/628
https://github.com/vantage6/vantage6/pull/629
https://github.com/vantage6/vantage6/pull/632
https://github.com/vantage6/vantage6/pull/618
https://github.com/vantage6/vantage6/pull/609


vantage6

4.12.30 3.8.2

22 march 2023

• Feature

• Location of the server configuration file in server shell script can now be specified as an environment variable
(PR#604)

• Change

• Changed ping/pong mechanism over socket connection between server and nodes, as it did not function properly
in combination with RabbitMQ. Now, the node pushes a ping and the server periodically checks if the node is
still alive (PR#593)

• Bugfix

• For vnode files, take the new formatting of the databases in the node configuration file into account (PR#600)

• Fix bugs in new algorithm client where class attributes were improperly referred to (PR#596)

• Fixed broken links in Discord notification (PR#591)

4.12.31 3.8.1

8 march 2023

• Bugfix

• In 3.8.0, starting RabbitMQ for horizontal scaling caused a server crash due to a missing kombu dependency.
This dependency was wrongly removed in updating all dependencies for python 3.10 ( PR#585).

4.12.32 3.8.0

8 march 2023

• Security

• Refresh tokens are no longer indefinitely valid ( CVE#CVE-2023-23929, commit).

• It was possible to obtain usernames by brute forcing the login since v3.3.0. This was due to a change where users
got to see a message their account was blocked after N failed login attempts. Now, users get an email instead if
their account is blocked ( CVE#CVE-2022-39228, commit ).

• Assigning existing users to a different organizations was possible. This may lead to unintended access: if a user
from organization A is accidentally assigned to organization B, they will retain their permissions and therefore
might be able to access resources they should not be allowed to access (CVE#CVE-2023-22738, commit).

• Feature

• Python version upgrade to 3.10 and many dependencies are upgraded ( PR#513, Issue#251).

• Added AlgorithmClientwhich will replace ContainerClient in v4.0. For now, the new AlgorithmClient
can be used by specifying use_new_client=True in the algorithm wrapper ( PR#510, Issue#493).

• It is now possible to request some of the node configuration settings, e.g. which algorithms they allow to be run
( PR#523, Issue#12).

• Added auto_wrapper which detects the data source types and reads the data accordingly. This removes the
need to rebuild every algorithm for every data source type ( PR#555, Issue#553).

4.12. Release notes 219

https://github.com/vantage6/vantage6/pull/604
https://github.com/vantage6/vantage6/pull/593
https://github.com/vantage6/vantage6/pull/600
https://github.com/vantage6/vantage6/pull/596
https://github.com/vantage6/vantage6/pull/591
https://github.com/vantage6/vantage6/pull/585
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-23929
https://github.com/vantage6/vantage6/commit/48ebfca42359e9a6743e9598684585e2522cdce8
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-39228
https://github.com/vantage6/vantage6/commit/ab4381c35d24add06f75d5a8a284321f7a340bd2
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22738
https://github.com/vantage6/vantage6/commit/798aca1de142a4eca175ef51112e2235642f4f24
https://github.com/vantage6/vantage6/pull/513
https://github.com/vantage6/vantage6/issues/251
https://github.com/vantage6/vantage6/pull/510
https://github.com/vantage6/vantage6/issues/493
https://github.com/vantage6/vantage6/pull/523
https://github.com/vantage6/vantage6/issues/12
https://github.com/vantage6/vantage6/pull/555
https://github.com/vantage6/vantage6/issues/553


vantage6

• New endpoint added /vpn/algorithm/addresses for algorithms to obtain addresses for containers that are
part of the same computation task ( PR#501, Issue#499).

• Added the option to allow only allow certain organization and/or users to run tasks on your node. This can be
done by using the policies configuration option. Note that the allowed_images option is now nested under
the policies option ( Issue#335, PR#556)

• Change

• Some changes have been made to the release pipeline ( PR#519, PR#488, PR#500, Issue#485).

• Removed unused script to start the shell ( PR#494).

• Bugfix

• Algorithm containers running on the same node could not communicate with each other through the VPN. This
has been fixed ( PR#532, Issue#336).

4.12.33 3.7.3

22 february 2023

• Bugfix

• A database commit in 3.7.2 was done on the wrong variable, this has been corrected (PR#547, Issue#534).

• Delete entries in the VPN port table after the algorithm has completed (PR#548).

• Limit number of characters of the task input printed to the logs (PR#550).

4.12.34 3.7.2

20 february 2023

• Bugfix

• In 3.7.1, some sessions were closed, but not all. Now, sessions are also terminated in the socketIO events
(PR#543, Issue#534).

• Latest versions of VPN images were not automatically downloaded by node on VPN connection startup. This
has been corrected ( PR#542).

4.12.35 3.7.1

16 february 2023

• Change

• Some changes to the release pipeline.

• Bugfix

• iptables dependency was missing in the VPN client container ( PR#533 Issue#518).

• Fixed a bug that did not close Postgres DB sessions, resulting in a dead server (PR#540, Issue#534).

220 Chapter 4. Index

https://github.com/vantage6/vantage6/pull/501
https://github.com/vantage6/vantage6/issues/499
https://github.com/vantage6/vantage6/issues/335
https://github.com/vantage6/vantage6/pull/556
https://github.com/vantage6/vantage6/pull/519
https://github.com/vantage6/vantage6/pull/488
https://github.com/vantage6/vantage6/pull/500
https://github.com/vantage6/vantage6/issues/485
https://github.com/vantage6/vantage6/pull/494
https://github.com/vantage6/vantage6/pull/532
https://github.com/vantage6/vantage6/issues/336
https://github.com/vantage6/vantage6/pull/547
https://github.com/vantage6/vantage6/issues/534
https://github.com/vantage6/vantage6/pull/548
https://github.com/vantage6/vantage6/pull/550
https://github.com/vantage6/vantage6/pull/543
https://github.com/vantage6/vantage6/issues/534
https://github.com/vantage6/vantage6/pull/542
https://github.com/vantage6/vantage6/pull/533
https://github.com/vantage6/vantage6/issues/518
https://github.com/vantage6/vantage6/pull/540
https://github.com/vantage6/vantage6/issues/534


vantage6

4.12.36 3.7.0

25 january 2023

• Feature

• SSH tunnels are available on the node. This allows nodes to connect to other machines over SSH, thereby greatly
expanding the options to connect databases and other services to the node, which before could only be made
available to the algorithms if they were running on the same machine as the node (PR#461, Issue#162).

• For two-factor authentication, the information given to the authenticator app has been updated to include a clearer
description of the server and username (PR#483, Issue#405).

• Added the option to run an algorithm without passing data to it using the CSV wrapper (PR#465)

• In the UI, when users are about to create a task, they will now be shown which nodes relevant to the task are
offline (PR#97, Issue#96).

• Change

• The docker dependency is updated, so that docker.pull() now pulls the default tag if no tag is specified,
instead of all tags (PR#481, Issue#473).

• If a node cannot authenticate to the server because the server cannot be found, the user now gets a clearer error
message(PR#480, Issue#460).

• The default role ‘Organization admin’ has been updated: it now allows to create nodes for their own organization
(PR#489).

• The release pipeline has been updated to 1) release to PyPi as last step ( since that is irreversible), 2) create
release branches, 3) improve the check on the version tag, and 4) update some soon-to-be-deprecated commands
(PR#488.

• Not all nodes are alerted any more when a node comes online (PR#490).

• Added instructions to the UI on how to report bugs (PR#100, Issue#57).

• Bugfix

• Newer images were not automatically pulled from harbor on node or server startup. This has been fixed (PR#482,
Issue#471).

4.12.37 3.6.1

12 january 2023

• Feature

• Algorithm containers can be killed from the client. This can be done for a specific task or it possible to kill all
tasks running at a specific node (PR#417, Issue#167).

• Added a status field for an algorithm, that tracks if an algorithm has yet to start, is started, has finished, or has
failed. In the latter case, it also indicates how/when the algorithm failed (PR#417).

• The UI has been connected to the socket, and gives messages about node and task status changes (UI PR#84, UI
Issue #73). There are also new permissions for socket events on the server to authorize users to see events from
their (or all) collaborations (PR#417).

• It is now possible to create tasks in the UI (UI version >3.6.0). Note that all tasks are then JSON serialized and
you will not be able to run tasks in an encrypted collaboration (as that would require uploading a private key to
a browser) (PR#90).

4.12. Release notes 221

https://github.com/vantage6/vantage6/pull/461
https://github.com/vantage6/vantage6/issues/162
https://github.com/vantage6/vantage6/pull/483
https://github.com/vantage6/vantage6/issues/405
https://github.com/vantage6/vantage6/pull/465
https://github.com/vantage6/vantage6-UI/pull/97
https://github.com/vantage6/vantage6-UI/issues/96
https://github.com/vantage6/vantage6/pull/481
https://github.com/vantage6/vantage6/issues/473
https://github.com/vantage6/vantage6/pull/480
https://github.com/vantage6/vantage6/issues/460
https://github.com/vantage6/vantage6/pull/489
https://github.com/vantage6/vantage6/pull/488
https://github.com/vantage6/vantage6/pull/490
https://github.com/vantage6/vantage6-UI/pull/100
https://github.com/vantage6/vantage6-UI/issues/57
https://github.com/vantage6/vantage6/pull/482
https://github.com/vantage6/vantage6/issues/471
https://github.com/vantage6/vantage6/pull/417
https://github.com/vantage6/vantage6/issues/167
https://github.com/vantage6/vantage6/pull/417
https://github.com/vantage6/vantage6-UI/pull/84
https://github.com/vantage6/vantage6-UI/issues/73
https://github.com/vantage6/vantage6-UI/issues/73
https://github.com/vantage6/vantage6/pull/417


vantage6

Warning: If you want to run the UI Docker image, note that from this version onwards, you have to define
the SERVER_URL and API_PATH environment variables (compared to just a API_URL before).

• There is a new multi-database wrapper that will forward a dictionary of all node databases and their paths to the
algorithm. This allows you to use multiple databases in a single algorithm easily. (PR#424, Issue #398).

• New rules are now assigned automatically to the default root role. This ensures that rules that are added in a
new version are assigned to system administrators, instead of them having to change the database (PR#456, Issue
#442).

• There is a new command vnode set-api-key that facilitates putting your API key into the node configuration
file (PR#428, Issue #259).

• Logging in the Python client has been improved: instead of all or nothing, log level is now settable to one of
debug, info, warn, error, critical (PR#453, Issue #340).

• When there is an error in the VPN server configuration, the user receives clearer error messages than before
(PR#444, Issue #278).

• Change

• The node status (online/offline) is now checked periodically over the socket connection via a ping/pong construc-
tion. This is an improvement over the older version where a node’s status was changed only when it connected
or disconnected (PR#450, Issue #40).

Warning: If a server upgrades to 3.6.1, the nodes should also be upgraded. Otherwise, the node status will
be incorrect and the logs will show errors periodically with each attempted ping/pong.

• It is no longer possible for any user to change the username of another user, as this would be confusing for that
user when logging in (PR#433, Issue #396).

• The server has shorter log messages when someone calls a non-existing route. The resulting 404 exception is no
longer logged (PR#452, Issue #393).

• Removed old, unused scripts to start a node (PR#464).

• Bugfix

• Node was unable to pull images from Docker Hub; this has been corrected. (PR#432, Issue#422).

• File-based database extensions were always converted to .csv when they were mounted to a node. Now, files
keep their original file extensions (PR#426, Issue #397).

• When a node configuration defined a wrong VPN subnet, the VPN connection didn’t work but this was not
detected until VPN was used. Now, the user is alerted immediately and VPN is turned off (PR#444).

• If a user tries to write a node or server config file to a non-existing directory, they are now getting a clear error
message instead of an incorrect one (PR#455, Issue #1)

• There was a circular import in the infrastructure code, which has now been resolved (PR#451, Issue #53).

• In PATCH /user, it was not possible to set some fields (e.g. firstname) to an empty string if there was a value
before. (PR#439, Issue #334).

Note: Release 3.6.0 was skipped due to an issue in the release process.

222 Chapter 4. Index

https://github.com/vantage6/vantage6/pull/424
https://github.com/vantage6/vantage6/issues/398
https://github.com/vantage6/vantage6/pull/456
https://github.com/vantage6/vantage6/issues/442
https://github.com/vantage6/vantage6/issues/442
https://github.com/vantage6/vantage6/pull/418
https://github.com/vantage6/vantage6/issues/259
https://github.com/vantage6/vantage6/pull/453
https://github.com/vantage6/vantage6/issues/340
https://github.com/vantage6/vantage6/pull/444
https://github.com/vantage6/vantage6/issues/278
https://github.com/vantage6/vantage6/pull/450
https://github.com/vantage6/vantage6/issues/40
https://github.com/vantage6/vantage6/pull/433
https://github.com/vantage6/vantage6/issues/396
https://github.com/vantage6/vantage6/pull/452
https://github.com/vantage6/vantage6/issues/393
https://github.com/vantage6/vantage6/pull/464
https://github.com/vantage6/vantage6/pull/432
https://github.com/vantage6/vantage6/issues/422
https://github.com/vantage6/vantage6/pull/426
https://github.com/vantage6/vantage6/issues/397
https://github.com/vantage6/vantage6/pull/444
https://github.com/vantage6/vantage6/pull/455
https://github.com/vantage6/vantage6/issues/1
https://github.com/vantage6/vantage6/pull/451
https://github.com/vantage6/vantage6/issues/53
https://github.com/vantage6/vantage6/pull/439
https://github.com/vantage6/vantage6/issues/334


vantage6

4.12.38 3.5.2

30 november 2022

• Bugfix

• Fix for automatic addition of column. This failed in some SQL dialects because reserved keywords (i.e. ‘user’
for PostgresQL) were not escaped (PR#415)

• Correct installation order for uWSGI in node and server docker file (PR#414)

4.12.39 3.5.1

30 november 2022

• Bugfix

• Backwards compatibility for which organization initiated a task between v3.0-3.4 and v3.5 (PR#412)

• Fixed VPN client container. Entry script was not executable in Github pipelines (PR#413)

4.12.40 3.5.0

30 november 2022

Warning: When upgrading to 3.5.0, you might need to add the otp_secret column to the user table manually in
the database. This may be avoided by upgrading to 3.5.2.

• Feature

• Multi-factor authentication via TOTP has been added. Admins can enforce that all users enable MFA (PR#376,
Issue#355).

• You can now request all tasks assigned by a given user (PR#326, Issue#43).

• The server support email is now settable in the configuration file, used to be fixed at support@vantage6.ai
(PR#330, Issue#319).

• When pickles are used, more task info is shown in the node logs (PR#366, Issue#171).

• Change

• The harbor2.vantag6.ai/infrastructure/algorithm-base:[TAG] is tagged with the vantage6-client
version that is already in the image (PR#389, Issue#233).

• The infrastructure base image has been updated to improve build time (PR#406, Issue#250).

4.12.41 3.4.2

3 november 2022

• Bugfix

• Fixed a bug in the local proxy server which made algorithm containers crash in case the client.create_new_task
method was used (PR#382).

• Fixed a bug where the node crashed when a non existing image was sent in a task (PR#375).

4.12. Release notes 223

https://github.com/vantage6/vantage6/pull/415
https://github.com/vantage6/vantage6/pull/414
https://github.com/vantage6/vantage6/pull/413
https://github.com/vantage6/vantage6/pull/413
https://github.com/vantage6/vantage6/pull/376
https://github.com/vantage6/vantage6/issues/355
https://github.com/vantage6/vantage6/pull/326
https://github.com/vantage6/vantage6/issues/43
https://github.com/vantage6/vantage6/pull/330
https://github.com/vantage6/vantage6/issues/319
https://github.com/vantage6/vantage6/pull/366
https://github.com/vantage6/vantage6/issues/171
https://github.com/vantage6/vantage6/pull/389
https://github.com/vantage6/vantage6/issues/233
https://github.com/vantage6/vantage6/pull/406
https://github.com/vantage6/vantage6/issues/250
https://github.com/vantage6/vantage6/pull/382
https://github.com/vantage6/vantage6/pull/375


vantage6

4.12.42 3.4.0 & 3.4.1

25 oktober 2022

• Feature

• Add columns to the SQL database on startup (PR#365, ISSUE#364). This simpifies the upgrading proces when a
new column is added in the new release, as you do no longer need to manually add columns. When downgrading
the columns will not be deleted.

• Docker wrapper for Parquet files (PR#361, ISSUE#337). Parquet provides a way to store tabular data with the
datatypes included which is an advantage over CSV.

• When the node starts, or when the client is verbose initialized a banner to cite the vantage6 project is added
(PR#359, ISSUE#356).

• In the client a waiting for results method is added (PR#325, ISSUE#8). Which allows you to automatically poll for
results by using client.wait_for_results(...), for more info see help(client.wait_for_results).

• Added Github releases (PR#358, ISSUE#357).

• Added option to filter GET /role by user id in the Python client (PR#328, ISSUE#213). E.g.: client.role.
list(user=...).

• In release process, build and release images for both ARM and x86 architecture.

• Change

• Unused code removed from the Makefile (PR#324, ISSUE#284).

• Pandas version is frozen to version 1.3.5 (PR#363 , ISSUE#266).

• Bugfix

• Improve checks for non-existing resources in unittests (PR#320, ISSUE#265). Flask did not support negative
ints, so the tests passed due to another 404 response.

• client.node.list does no longer filter by offline nodes (PR#321, ISSUE#279).

Note: 3.4.1 is a rebuild from 3.4.0 in which the all dependencies are fixed, as the build led to a broken server image.

4.12.43 3.3.7

• Bugfix

• The function client.util.change_my_password() was updated (Issue #333)

4.12.44 3.3.6

• Bugfix

• Temporary fix for a bug that prevents the master container from creating tasks in an encrypted collaboration.
This temporary fix disables the parallel encryption module in the local proxy. This functionality will be restored
in a future release.

Note: This version is also the first version where the User Interface is available in the right version. From this point
onwards, the user interface changes will also be part of the release notes.

224 Chapter 4. Index

https://github.com/vantage6/vantage6/pull/365
https://github.com/vantage6/vantage6/issues/364
https://github.com/vantage6/vantage6/pull/361
https://github.com/vantage6/vantage6/issues/337
https://github.com/vantage6/vantage6/pull/359
https://github.com/vantage6/vantage6/issues/356
https://github.com/vantage6/vantage6/pull/325
https://github.com/vantage6/vantage6/issues/8
https://github.com/vantage6/vantage6/pull/358
https://github.com/vantage6/vantage6/issues/357
https://github.com/vantage6/vantage6/pull/328
https://github.com/vantage6/vantage6/issues/213
https://github.com/vantage6/vantage6/issues/357
https://github.com/vantage6/vantage6/issues/284
https://github.com/vantage6/vantage6/pull/363
https://github.com/vantage6/vantage6/issues/266
https://github.com/vantage6/vantage6/pull/320
https://github.com/vantage6/vantage6/issues/265
https://github.com/vantage6/vantage6/pull/321
https://github.com/vantage6/vantage6/issues/279
https://github.com/vantage6/vantage6/issues/333


vantage6

4.12.45 3.3.5

• Feature

• The release pipeline has been expanded to automatically push new Docker images of node/server to the harbor2
service.

• Bugfix

• The VPN IP address for a node was not saved by the server using the PATCH /node endpoint, while this func-
tionality is required to use the VPN

Note: Note that 3.3.4 was only released on PyPi and that version is identical to 3.3.5. That version was otherwise
skipped due to a temporary mistake in the release pipeline.

4.12.46 3.3.3

• Bugfix

• Token refresh was broken for both users and nodes. (Issue#306, PR#307)

• Local proxy encrpytion was broken. This prefented algorithms from creating sub tasks when encryption was
enabled. (Issue#305, PR#308)

4.12.47 3.3.2

• Bugfix

• vpn_client_image and network_config_image are settable through the node configuration file. (PR#301,
Issue#294)

• The option --all from vnode stop did not stop the node gracefully. This has been fixed. It is possible to force
the nodes to quit by using the --force flag. (PR#300, Issue#298)

• Nodes using a slow internet connection (high ping) had issues with connecting to the websocket channel.
(PR#299, Issue#297)

4.12.48 3.3.1

• Bugfix

• Fixed faulty error status codes from the /collaboration endpoint (PR#287).

• Default roles are always returned from the /role endpoint. This fixes the error when a user was assigned a
default role but could not reach anything (as it could not view its own role) (PR#286).

• Performance upgrade in the /organization endpoint. This caused long delays when retrieving organization
information when the organization has many tasks (PR#288).

• Organization admins are no longer allowed to create and delete nodes as these should be managed at collaboration
level. Therefore, the collaboration admin rules have been extended to include create and delete nodes rules
(PR#289).

• Fixed some issues that made 3.3.0 incompatible with 3.3.1 (Issue#285).

4.12. Release notes 225

https://github.com/vantage6/vantage6/issues/306
https://github.com/vantage6/vantage6/pull/307
https://github.com/vantage6/vantage6/issues/305
https://github.com/vantage6/vantage6/pull/308
https://github.com/vantage6/vantage6/pull/301
https://github.com/vantage6/vantage6/issues/294
https://github.com/vantage6/vantage6/pull/300
https://github.com/vantage6/vantage6/issues/298
https://github.com/vantage6/vantage6/pull/299
https://github.com/vantage6/vantage6/issues/297
https://github.com/vantage6/vantage6/pull/287
https://github.com/vantage6/vantage6/pull/286
https://github.com/vantage6/vantage6/pull/288
https://github.com/vantage6/vantage6/pull/289
https://github.com/vantage6/vantage6/issues/285


vantage6

4.12.49 3.3.0

• Feature

• Login requirements have been updated. Passwords are now required to have sufficient complexity (8+ characters,
and at least 1 uppercase, 1 lowercase, 1 digit, 1 special character). Also, after 5 failed login attempts, a user
account is blocked for 15 minutes (these defaults can be changed in a server config file).

• Added endpoint /password/change to allow users to change their password using their current password as
authentication. It is no longer possible to change passwords via client.user.update() or via a PATCH
/user/{id} request.

• Added the default roles ‘viewer’, ‘researcher’, ‘organization admin’ and ‘collaboration admin’ to newly created
servers. These roles may be assigned to users of any organization, and should help users with proper permission
assignment.

• Added option to filter get all roles for a specific user id in the GET /role endpoint.

• RabbitMQ has support for multiple servers when using vserver start. It already had support for multiple
servers when deploying via a Docker compose file.

• When exiting server logs or node logs with Ctrl+C, there is now an additional message alerting the user that the
server/node is still running in the background and how they may stop them.

• Change

• Node proxy server has been updated

• Updated PyJWT and related dependencies for improved JWT security.

• When nodes are trying to use a wrong API key to authenticate, they now receive a clear message in the node logs
and the node exits immediately.

• When using vserver import, API keys must now be provided for the nodes you create.

• Moved all swagger API docs from YAML files into the code. Also, corrected errors in them.

• API keys are created with UUID4 instead of UUID1. This prevents that UUIDs created milliseconds apart are
not too similar.

• Rules for users to edit tasks were never used and have therefore been deleted.

• Bugfix

• In the Python client, client.organization.list() now shows pagination metadata by default, which is
consistent all other list() statements.

• When not providing an API key in vnode new, there used to be an unclear error message. Now, we allow
specifying an API key later and provide a clearer error message for any other keys with inadequate values.

• It is now possible to provide a name when creating a name, both via the Python client as via the server.

• A GET /role request crashed if parameter organization_id was defined but not include_root. This has
been resolved.

• Users received an ‘unexpected error’ when performing a GET /collaboration?organization_id=<id>
request and they didn’t have global collaboration view permission. This was fixed.

• GET /role/<id> didn’t give an error if a role didn’t exist. Now it does.

226 Chapter 4. Index



vantage6

4.12.50 3.2.0

• Feature

• Horizontal scaling for the vantage6-server instance by adding support for RabbitMQ.

• It is now possible to connect other docker containers to the private algorithm network. This enables you to attach
services to the algorithm network using the docker_services setting.

• Many additional select and filter options on API endpoints, see swagger docs endpoint (/apidocs). The new
options have also been added to the Python client.

• Users are now always able to view their own data

• Usernames can be changed though the API

• Bugfix

• (Confusing) SQL errors are no longer returned from the API.

• Clearer error message when an organization has multiple nodes for a single collaboration.

• Node no longer tries to connect to the VPN if it has no vpn_subnet setting in its configuration file.

• Fix the VPN configuration file renewal

• Superusers are no longer able to post tasks to collaborations its organization does not participate in. Note that
superusers were never able to view the results of such tasks.

• It is no longer possible to post tasks to organization which do not have a registered node attach to the collaboration.

• The vnode create-private-key command no longer crashes if the ssh directory does not exist.

• The client no longer logs the password

• The version of the alpine docker image (that is used to set up algorithm runs with VPN) was fixed. This prevents
that many versions of this image are downloaded by the node.

• Improved reading of username and password from docker registry, which can be capitalized differently depending
on the docker version.

• Fix error with multiple-database feature, where default is now used if specific database is not found

4.12.51 3.1.0

• Feature

• Algorithm-to-algorithm communication can now take place over multiple ports, which the algorithm developer
can specify in the Dockerfile. Labels can be assigned to each port, facilitating communication over multiple
channels.

• Multi-database support for nodes. It is now also possible to assign multiple data sources to a single node in
Petronas; this was already available in Harukas 2.2.0. The user can request a specific data source by supplying
the database argument when creating a task.

• The CLI commands vserver new and vnode new have been extended to facilitate configuration of the VPN
server.

• Filter options for the client have been extended.

• Roles can no longer be used across organizations (except for roles in the default organization)

• Added vnode remove command to uninstall a node. The command removes the resources attached to a node
installation (configuration files, log files, docker volumes etc).

4.12. Release notes 227



vantage6

• Added option to specify configuration file path when running vnode create-private-key.

• Bugfix

• Fixed swagger docs

• Improved error message if docker is not running when a node is started

• Improved error message for vserver version and vnode version if no servers or nodes are running

• Patching user failed if users had zero roles - this has been fixed.

• Creating roles was not possible for a user who had permission to create roles only for their own organization -
this has been corrected.

4.12.52 3.0.0

• Feature

• Direct algorithm-to-algorithm communication has been added. Via a VPN connection, algorithms can exchange
information with one another.

• Pagination is added. Metadata is provided in the headers by default. It is also possible to include them in the
output body by supplying an additional parameterinclude=metadata. Parameters page and per_page can be
used to paginate. The following endpoints are enabled:

– GET /result

– GET /collaboration

– GET /collaboration/{id}/organization

– GET /collaboration/{id}/node

– GET /collaboration/{id}/task

– GET /organization

– GET /role

– GET /role/{id}/rule

– GET /rule

– GET /task

– GET /task/{id}/result

– GET /node

• API keys are encrypted in the database

• Users cannot shrink their own permissions by accident

• Give node permission to update public key

• Dependency updates

• Bugfix

• Fixed database connection issues

• Don’t allow users to be assigned to non-existing organizations by root

• Fix node status when node is stopped and immediately started up

• Check if node names are allowed docker names

228 Chapter 4. Index



vantage6

4.12.53 2.3.0 - 2.3.4

• Feature

• Allows for horizontal scaling of the server instance by adding support for RabbitMQ. Note that this has not been
released for version 3(!)

• Bugfix

• Performance improvements on the /organization endpoint

4.12.54 2.2.0

• Feature

• Multi-database support for nodes. It is now possible to assign multiple data sources to a single node. The user
can request a specific data source by supplying the database argument when creating a task.

• The mailserver now supports TLS and SSL options

• Bugfix

• Nodes are now disconnected more gracefully. This fixes the issue that nodes appear offline while they are in fact
online

• Fixed a bug that prevented deleting a node from the collaboration

• A role is now allowed to have zero rules

• Some http error messages have improved

• Organization fields can now be set to an empty string

4.12.55 2.1.2 & 2.1.3

• Bugfix

• Changes to the way the application interacts with the database. Solves the issue of unexpected disconnects from
the DB and thereby freezing the application.

4.12.56 2.1.1

• Bugfix

• Updating the country field in an organization works again\

• The client.result.list(...) broke when it was not able to deserialize one of the in- or outputs.

4.12. Release notes 229



vantage6

4.12.57 2.1.0

• Feature

• Custom algorithm environment variables can be set using the algorithm_env key in the configuration file. See
this Github issue.

• Support for non-file-based databases on the node. See this Github issue.

• Added flag --attach to the vserver start and vnode start command. This directly attaches the log to the
console.

• Auto updating the node and server instance is now limited to the major version. See this Github issue.

– e.g. if you’ve installed the Trolltunga version of the CLI you will always get the Trolltunga version of the
node and server.

– Infrastructure images are now tagged using their version major. (e.g. trolltunga or harukas )

– It is still possible to use intermediate versions by specifying the --image option when starting the node
or server. (e.g. vserver start --image harbor.vantage6.ai/infrastructure/server:2.0.
0.post1 )

• Bugfix

• Fixed issue where node crashed if the database did not exist on startup. See this Github issue.

4.12.58 2.0.0.post1

• Bugfix

• Fixed a bug that prevented the usage of secured registry algorithms

4.12.59 2.0.0

• Feature

• Role/rule based access control

– Roles consist of a bundle of rules. Rules profided access to certain API endpoints at the server.

– By default 3 roles are created: 1) Container, 2) Node, 3) Root. The root role is assigned to the root user
on the first run. The root user can assign rules and roles from there.

• Major update on the python-client. The client also contains management tools for the server (i.e. to creating users,
organizations and managing permissions. The client can be imported from from vantage6.client import
Client .

• You can use the agrument verbose on the client to output status messages. This is usefull for example when
working with Jupyter notebooks.

• Added CLI vserver version , vnode version , vserver-local version and vnode-local version
commands to report the version of the node or server they are running

• The logging contains more information about the current setup, and refers to this documentation and our Discourd
channel

• Bugfix

• Issue with the DB connection. Session management is updated. Error still occurs from time to time but can be
reset by using the endpoint /health/fix . This will be patched in a newer version.

230 Chapter 4. Index

https://github.com/IKNL/vantage6-node/issues/32
https://github.com/IKNL/vantage6-node/issues/32
https://github.com/IKNL/vantage6/issues/66
https://github.com/IKNL/vantage6/issues/65
https://github.com/IKNL/vantage6/issues/67


vantage6

4.12.60 1.2.3

• Feature

• The node is now compatible with the Harbor v2.0 API

4.12.61 1.2.2

• Bug fixes

• Fixed a bug that ignored the --system flag from vnode start

• Logging output muted when the --config option is used in vnode start

• Fixed config folder mounting point when the option --config option is used in vnode start

4.12.62 1.2.1

• Bug fixes

• starting the server for the first time resulted in a crash as the root user was not supplied with an email address.

• Algorithm containers could still access the internet through their host. This has been patched.

4.12.63 1.2.0

• Features

• Cross language serialization. Enabling algorithm developers to write algorithms that are not language dependent.

• Reset password is added to the API. For this purpose two endpoints have been added: /recover/lostand
recover/reset . The server config file needs to extended to be connected to a mail-server in order to make this
work.

• User table in the database is extended to contain an email address which is mandatory.

• Bug fixes

• Collaboration name needs to be unique

• API consistency and bug fixes:

– GET organization was missing domain key

– PATCH /organization could not patch domain

– GET /collaboration/{id}/node has been made consistent with /node

– GET /collaboration/{id}/organization has been made consistent with /organization

– PATCH /user root-user was not able to update users

– DELETE /user root-user was not able to delete users

– GET /task null values are now consistent: [] is replaced by null

– POST, PATCH, DELETE /node root-user was not able to perform these actions

– GET /node/{id}/task output is made consistent with the

• other

• questionairy dependency is updated to 1.5.2

4.12. Release notes 231



vantage6

• vantage6-toolkit repository has been merged with the vantage6-client as they were very tight coupled.

4.12.64 1.1.0

• Features

• new command vnode clean to clean up temporary docker volumes that are no longer used

• Version of the individual packages are printed in the console on startup

• Custom task and log directories can be set in the configuration file

• Improved CLI messages

• Docker images are only pulled if the remote version is newer. This applies both to the node/server image and the
algorithm images

• Client class names have been simplified (UserClientProtocol -> Client)

• Bug fixes

• Removed defective websocket watchdog. There still might be disconnection issues from time to time.

4.12.65 1.0.0

• Updated Command Line Interface (CLI)

• The commands vnode list , vnode start and the new commandvnode attach are aimed to work with
multiple nodes at a single machine.

• System and user-directories can be used to store configurations by using the --user/--system options. The
node stores them by default at user level, and the server at system level.

• Current status (online/offline) of the nodes can be seen using vnode list , which also reports which environ-
ments are available per configuration.

• Developer container has been added which can inject the container with the source. vnode start --develop
[source]. Note that this Docker image needs to be build in advance from the development.Dockerfile and
tag devcon.

• vnode config_file has been replaced by vnode files which not only outputs the config file location but
also the database and log file location.

• New database model

• Improved relations between models, and with that, an update of the Python API.

• Input for the tasks is now stored in the result table. This was required as the input is encrypted individually for
each organization (end-to-end encryption (E2EE) between organizations).

• The Organization model has been extended with the public_key (String) field. This field contains the public
key from each organization, which is used by the E2EE module.

• The Collaboration model has been extended with the encrypted (Boolean) field which keeps track if all
messages (tasks, results) need to be E2EE for this specific collaboration.

• The Task keeps track of the initiator (organization) of the organization. This is required to encrypt the results
for the initiator.

• End to end encryption

• All messages between all organizations are by default be encrypted.

232 Chapter 4. Index



vantage6

• Each node requires the private key of the organization as it needs to be able to decrypt incoming messages. The
private key should be specified in the configuration file using the private_key label.

• In case no private key is specified, the node generates a new key an uploads the public key to the server.

• If a node starts (using vnode start), it always checks if the public_key on the server matches the private key
the node is currently using.

• In case your organization has multiple nodes running they should all point to the same private key.

• Users have to encrypt the input and decrypt the output, which can be simplified by using our client vantage6.
client.Client __ for Python __ or vtg::Client __ for R.

• Algorithms are not concerned about encryption as this is handled at node level.

• Algorithm container isolation

• Containers have no longer an internet connection, but are connected to a private docker network.

• Master containers can access the central server through a local proxy server which is both connected to the private
docker network as the outside world. This proxy server also takes care of the encryption of the messages from
the algorithms for the intended receiving organization.

• In case a single machine hosts multiple nodes, each node is attached to its own private Docker network.

• Temporary Volumes

• Each algorithm mounts temporary volume, which is linked to the node and the job_id of the task

• The mounting target is specified in an environment variable TEMPORARY_FOLDER. The algorithm can write any-
thing to this directory.

• These volumes need to be cleaned manually. (docker rm VOLUME_NAME)

• Successive algorithms only have access to the volume if they share the same job_id . Each time a user creates
a task, a new job_id is issued. If you need to share information between containers, you need to do this through
a master container. If a central container creates a task, all child tasks will get the same job_id.

• RESTful API

• All RESTful API output is HATEOS formatted.
(wiki)

• Local Proxy Server

• Algorithm containers no longer receive an internet connection. They can only communicate with the central
server through a local proxy service.

• It handles encryption for certain endpoints (i.e. /task, the input or /result the results)

• Dockerized the Node

• All node code is run from a Docker container. Build versions can be found at our Docker repository: harbor.
distributedlearning.ai/infrastructure/node . Specific version can be pulled using tags.

• For each running node, a Docker volume is created in which the data, input and output is stored. The name of the
Docker volume is: vantage-NODE_NAME-vol . This volume is shared with all incoming algorithm containers.

• Each node is attached to the public network and a private network: vantage-NODE_NAME-net.

4.12. Release notes 233

https://en.wikipedia.org/wiki/HATEOAS


vantage6

4.13 Partners

Our community is open to everyone. The following people and organizations made a significant contribution to the
design and implementation of vantage6.

• Anja van Gestel

• Bart van Beusekom

• Frank Martin

• Hasan Alradhi

• Melle Sieswerda

• Gijs Geleijnse

• Djura Smits

• Lourens Veen

• Johan van Soest

Would you like to contribute? Check out how to contribute! Find and chat with us via the Discord chat!

234 Chapter 4. Index

https://discord.gg/yAyFf6Y


PYTHON MODULE INDEX

v
vantage6.algorithm.client.__init__, 174
vantage6.algorithm.tools.mock_client, 184
vantage6.algorithm.tools.util, 187
vantage6.algorithm.tools.wrap, 183
vantage6.algorithm.tools.wrappers, 181
vantage6.cli.configuration_manager, 152
vantage6.cli.configuration_wizard, 153
vantage6.cli.context, 145
vantage6.cli.context.algorithm_store, 150
vantage6.cli.context.base_server, 151
vantage6.cli.context.node, 146
vantage6.cli.context.server, 148
vantage6.cli.rabbitmq, 155
vantage6.cli.rabbitmq.queue_manager, 154
vantage6.cli.utils, 155
vantage6.client, 156
vantage6.client.exceptions, 174
vantage6.client.subclients.algorithm, 170
vantage6.client.subclients.algorithm_store,

172
vantage6.client.subclients.study, 168
vantage6.client.utils, 174
vantage6.common, 196
vantage6.common.colors, 203
vantage6.common.configuration_manager, 188
vantage6.common.context, 189
vantage6.common.docker.addons, 199
vantage6.common.docker.network_manager, 201
vantage6.common.encryption, 193
vantage6.common.exceptions, 204
vantage6.common.task_status, 203
vantage6.node, 111
vantage6.node.cli.node, 123
vantage6.node.docker.exceptions, 121
vantage6.node.proxy_server, 121

235



vantage6

236 Python Module Index



INDEX

Symbols
_AnsiColorStreamHandler (class in van-

tage6.common.colors), 203
_WinColorStreamHandler (class in van-

tage6.common.colors), 203
__listening_worker() (Node method), 112
__proxy_server_worker() (Node method), 112
__speaking_worker() (Node method), 112
__start_task() (Node method), 112
_get_color() (_AnsiColorStreamHandler class

method), 203
_get_color() (_WinColorStreamHandler class

method), 204
--all

v6-algorithm-store-cli-algo-store-stop
command line option, 141

v6-node-cli-node-stop command line
option, 132

v6-server-cli-server-stop command line
option, 138

--all-nodes
v6-test-cli-test-features command line

option, 144
--api-key

v6-node-cli-node-set-api-key command
line option, 131

--api-path
v6-test-cli-test-features command line

option, 144
--attach

v6-algorithm-store-cli-algo-store-start
command line option, 140

v6-node-cli-node-start command line
option, 132

v6-server-cli-server-start command line
option, 137

--auto-remove
v6-algorithm-store-cli-algo-store-start

command line option, 140
v6-node-cli-node-start command line

option, 132
v6-server-cli-server-import command

line option, 134
v6-server-cli-server-start command line

option, 137
--collaboration

v6-test-cli-test-features command line
option, 144

--config
v6-algorithm-store-cli-algo-store-attach

command line option, 139
v6-algorithm-store-cli-algo-store-files

command line option, 139
v6-algorithm-store-cli-algo-store-start

command line option, 140
v6-algorithm-store-cli-algo-store-stop

command line option, 141
v6-dev-remove-demo-network command line

option, 142
v6-dev-start-demo-network command line

option, 143
v6-dev-stop-demo-network command line

option, 143
v6-node-cli-node-create-private-key

command line option, 129
v6-node-cli-node-start command line

option, 132
v6-server-cli-server-files command line

option, 134
v6-server-cli-server-import command

line option, 135
v6-server-cli-server-remove command

line option, 136
v6-server-cli-server-shell command line

option, 136
v6-server-cli-server-start command line

option, 137
vnode-local-start command line option,

125
--detach

v6-algorithm-store-cli-algo-store-start
command line option, 140

v6-node-cli-node-start command line
option, 132

237



vantage6

v6-server-cli-server-start command line
option, 137

--dockerized
vnode-local-start command line option,

125
--drop-all

v6-server-cli-server-import command
line option, 134

--extra-node-config
v6-dev-create-demo-network command line

option, 142
v6-test-cli-test-integration command

line option, 145
--extra-server-config

v6-dev-create-demo-network command line
option, 142

v6-test-cli-test-integration command
line option, 145

--force
v6-node-cli-node-remove command line

option, 131
v6-node-cli-node-stop command line

option, 132
v6-server-cli-server-remove command

line option, 136
--force-db-mount

v6-node-cli-node-start command line
option, 132

--host
v6-test-cli-test-features command line

option, 144
--image

v6-algorithm-store-cli-algo-store-start
command line option, 140

v6-dev-create-demo-network command line
option, 142

v6-node-cli-node-start command line
option, 132

v6-server-cli-server-import command
line option, 134

v6-server-cli-server-start command line
option, 137

v6-test-cli-test-integration command
line option, 145

--ip
v6-algorithm-store-cli-algo-store-start

command line option, 140
v6-server-cli-server-start command line

option, 137
--keep

v6-algorithm-store-cli-algo-store-start
command line option, 140

v6-node-cli-node-start command line
option, 132

v6-server-cli-server-import command
line option, 134

v6-server-cli-server-start command line
option, 137

v6-test-cli-test-integration command
line option, 145

--mount-src
v6-algorithm-store-cli-algo-store-start

command line option, 140
v6-node-cli-node-start command line

option, 132
v6-server-cli-server-import command

line option, 134
v6-server-cli-server-start command line

option, 137
--name

v6-algorithm-store-cli-algo-store-attach
command line option, 139

v6-algorithm-store-cli-algo-store-files
command line option, 139

v6-algorithm-store-cli-algo-store-new
command line option, 140

v6-algorithm-store-cli-algo-store-start
command line option, 140

v6-algorithm-store-cli-algo-store-stop
command line option, 141

v6-dev-create-demo-network command line
option, 142

v6-dev-remove-demo-network command line
option, 142

v6-dev-start-demo-network command line
option, 143

v6-dev-stop-demo-network command line
option, 143

v6-node-cli-node-attach command line
option, 129

v6-node-cli-node-create-private-key
command line option, 129

v6-node-cli-node-files command line
option, 130

v6-node-cli-node-new-configuration
command line option, 130

v6-node-cli-node-remove command line
option, 131

v6-node-cli-node-set-api-key command
line option, 131

v6-node-cli-node-start command line
option, 132

v6-node-cli-node-stop command line
option, 132

v6-node-cli-node-version command line
option, 133

v6-server-cli-server-attach command
line option, 133

238 Index



vantage6

v6-server-cli-server-files command line
option, 134

v6-server-cli-server-import command
line option, 135

v6-server-cli-server-new command line
option, 135

v6-server-cli-server-remove command
line option, 136

v6-server-cli-server-shell command line
option, 136

v6-server-cli-server-start command line
option, 137

v6-server-cli-server-stop command line
option, 138

v6-server-cli-server-version command
line option, 138

v6-test-cli-test-integration command
line option, 145

vnode-local-files command line option,
124

vnode-local-new command line option, 124
vnode-local-start command line option,

125
--no-upload

v6-node-cli-node-create-private-key
command line option, 129

--no-vpn
v6-test-cli-test-features command line

option, 144
--node-image

v6-dev-start-demo-network command line
option, 143

--num-nodes
v6-dev-create-demo-network command line

option, 142
--online-only

v6-test-cli-test-features command line
option, 144

--organization-name
v6-node-cli-node-create-private-key

command line option, 129
--organizations

v6-test-cli-test-features command line
option, 144

--overwrite
v6-node-cli-node-create-private-key

command line option, 129
--password

v6-test-cli-test-features command line
option, 144

--port
v6-algorithm-store-cli-algo-store-start

command line option, 140
v6-server-cli-server-start command line

option, 137
v6-test-cli-test-features command line

option, 144
--private-key

v6-test-cli-test-features command line
option, 144

--rabbitmq-image
v6-server-cli-server-start command line

option, 137
--server-image

v6-dev-start-demo-network command line
option, 143

--server-port
v6-dev-create-demo-network command line

option, 142
--server-url

v6-dev-create-demo-network command line
option, 142

v6-test-cli-test-integration command
line option, 145

--system
v6-algorithm-store-cli-algo-store-attach

command line option, 139
v6-algorithm-store-cli-algo-store-files

command line option, 139
v6-algorithm-store-cli-algo-store-new

command line option, 140
v6-algorithm-store-cli-algo-store-start

command line option, 140
v6-algorithm-store-cli-algo-store-stop

command line option, 141
v6-dev-remove-demo-network command line

option, 142
v6-dev-start-demo-network command line

option, 143
v6-dev-stop-demo-network command line

option, 143
v6-node-cli-node-attach command line

option, 129
v6-node-cli-node-create-private-key

command line option, 129
v6-node-cli-node-files command line

option, 130
v6-node-cli-node-new-configuration

command line option, 130
v6-node-cli-node-remove command line

option, 131
v6-node-cli-node-set-api-key command

line option, 131
v6-node-cli-node-start command line

option, 132
v6-node-cli-node-stop command line

option, 132
v6-node-cli-node-version command line

Index 239



vantage6

option, 133
v6-server-cli-server-attach command

line option, 133
v6-server-cli-server-files command line

option, 134
v6-server-cli-server-import command

line option, 135
v6-server-cli-server-new command line

option, 135
v6-server-cli-server-remove command

line option, 136
v6-server-cli-server-shell command line

option, 136
v6-server-cli-server-start command line

option, 137
v6-server-cli-server-stop command line

option, 138
v6-server-cli-server-version command

line option, 138
vnode-local-files command line option,

124
vnode-local-new command line option, 124
vnode-local-start command line option,

125
--ui-port

v6-server-cli-server-start command line
option, 137

--user
v6-algorithm-store-cli-algo-store-attach

command line option, 139
v6-algorithm-store-cli-algo-store-files

command line option, 139
v6-algorithm-store-cli-algo-store-new

command line option, 140
v6-algorithm-store-cli-algo-store-start

command line option, 140
v6-algorithm-store-cli-algo-store-stop

command line option, 141
v6-dev-remove-demo-network command line

option, 142
v6-dev-start-demo-network command line

option, 143
v6-dev-stop-demo-network command line

option, 143
v6-node-cli-node-attach command line

option, 129
v6-node-cli-node-create-private-key

command line option, 129
v6-node-cli-node-files command line

option, 130
v6-node-cli-node-new-configuration

command line option, 130
v6-node-cli-node-remove command line

option, 131

v6-node-cli-node-set-api-key command
line option, 131

v6-node-cli-node-start command line
option, 132

v6-node-cli-node-stop command line
option, 132

v6-node-cli-node-version command line
option, 133

v6-server-cli-server-attach command
line option, 133

v6-server-cli-server-files command line
option, 134

v6-server-cli-server-import command
line option, 135

v6-server-cli-server-new command line
option, 135

v6-server-cli-server-remove command
line option, 136

v6-server-cli-server-shell command line
option, 136

v6-server-cli-server-start command line
option, 137

v6-server-cli-server-stop command line
option, 138

v6-server-cli-server-version command
line option, 138

vnode-local-files command line option,
124

vnode-local-new command line option, 124
vnode-local-start command line option,

125
--username

v6-test-cli-test-features command line
option, 144

--wait
v6-server-cli-server-import command

line option, 134
--with-rabbitmq

v6-server-cli-server-start command line
option, 137

--with-ui
v6-server-cli-server-start command line

option, 137
-c

v6-algorithm-store-cli-algo-store-attach
command line option, 139

v6-algorithm-store-cli-algo-store-files
command line option, 139

v6-algorithm-store-cli-algo-store-start
command line option, 140

v6-algorithm-store-cli-algo-store-stop
command line option, 141

v6-dev-remove-demo-network command line
option, 142

240 Index



vantage6

v6-dev-start-demo-network command line
option, 143

v6-dev-stop-demo-network command line
option, 143

v6-node-cli-node-create-private-key
command line option, 129

v6-node-cli-node-start command line
option, 132

v6-server-cli-server-files command line
option, 134

v6-server-cli-server-import command
line option, 135

v6-server-cli-server-remove command
line option, 136

v6-server-cli-server-shell command line
option, 136

v6-server-cli-server-start command line
option, 137

vnode-local-start command line option,
125

-f
v6-node-cli-node-remove command line

option, 131
v6-server-cli-server-remove command

line option, 136
-i

v6-algorithm-store-cli-algo-store-start
command line option, 140

v6-dev-create-demo-network command line
option, 142

v6-node-cli-node-start command line
option, 132

v6-server-cli-server-import command
line option, 134

v6-server-cli-server-start command line
option, 137

v6-test-cli-test-integration command
line option, 145

-n
v6-algorithm-store-cli-algo-store-attach

command line option, 139
v6-algorithm-store-cli-algo-store-files

command line option, 139
v6-algorithm-store-cli-algo-store-new

command line option, 140
v6-algorithm-store-cli-algo-store-start

command line option, 140
v6-algorithm-store-cli-algo-store-stop

command line option, 141
v6-dev-create-demo-network command line

option, 142
v6-dev-remove-demo-network command line

option, 142
v6-dev-start-demo-network command line

option, 143
v6-dev-stop-demo-network command line

option, 143
v6-node-cli-node-attach command line

option, 129
v6-node-cli-node-create-private-key

command line option, 129
v6-node-cli-node-files command line

option, 130
v6-node-cli-node-new-configuration

command line option, 130
v6-node-cli-node-remove command line

option, 131
v6-node-cli-node-set-api-key command

line option, 131
v6-node-cli-node-start command line

option, 132
v6-node-cli-node-stop command line

option, 132
v6-node-cli-node-version command line

option, 133
v6-server-cli-server-attach command

line option, 133
v6-server-cli-server-files command line

option, 134
v6-server-cli-server-import command

line option, 135
v6-server-cli-server-new command line

option, 135
v6-server-cli-server-remove command

line option, 136
v6-server-cli-server-shell command line

option, 136
v6-server-cli-server-start command line

option, 137
v6-server-cli-server-stop command line

option, 138
v6-server-cli-server-version command

line option, 138
v6-test-cli-test-integration command

line option, 145
vnode-local-files command line option,

124
vnode-local-new command line option, 124
vnode-local-start command line option,

125
-non-dockerized

vnode-local-start command line option,
125

-o
v6-node-cli-node-create-private-key

command line option, 129
v6-test-cli-test-features command line

option, 144

Index 241



vantage6

-p
v6-algorithm-store-cli-algo-store-start

command line option, 140
v6-dev-create-demo-network command line

option, 142
v6-server-cli-server-start command line

option, 137

A
add_organization() (StudySubClient method), 169
add_organization() (UserClient.Collaboration

method), 156
algo_store_configuration_questionaire() (in

module vantage6.cli.configuration_wizard),
153

AlgorithmClient (class in van-
tage6.algorithm.client.__init__), 174

AlgorithmClient.Collaboration (class in van-
tage6.algorithm.client.__init__), 175

AlgorithmClient.Node (class in van-
tage6.algorithm.client.__init__), 175

AlgorithmClient.Organization (class in van-
tage6.algorithm.client.__init__), 175

AlgorithmClient.Result (class in van-
tage6.algorithm.client.__init__), 175

AlgorithmClient.Run (class in van-
tage6.algorithm.client.__init__), 176

AlgorithmClient.Study (class in van-
tage6.algorithm.client.__init__), 177

AlgorithmClient.Task (class in van-
tage6.algorithm.client.__init__), 177

AlgorithmClient.VPN (class in van-
tage6.algorithm.client.__init__), 178

AlgorithmContainerNotFound, 121
AlgorithmStoreContext (class in van-

tage6.cli.context.algorithm_store), 150
AlgorithmStoreSubClient (class in van-

tage6.client.subclients.algorithm_store),
172

AlgorithmSubClient (class in van-
tage6.client.subclients.algorithm), 170

AppContext (class in vantage6.common.context), 189
authenticate() (AlgorithmClient method), 180
authenticate() (Node method), 112
authenticate() (UserClient method), 168
AuthenticationException, 204
available_configurations() (AlgorithmStoreCon-

text class method), 150
available_configurations() (AppContext class

method), 189
available_configurations() (NodeContext class

method), 146
available_configurations() (ServerContext class

method), 149

B
base64s_to_bytes() (in module vantage6.common),

197
BaseServerContext (class in van-

tage6.cli.context.base_server), 151
bytes_to_base64s() (in module vantage6.common),

197
bytes_to_str() (CryptorBase static method), 193

C
change_my_password() (UserClient.Util method), 166
check_config_name_allowed() (in module van-

tage6.cli.utils), 155
check_config_writeable() (in module van-

tage6.common), 197
check_docker_running() (in module van-

tage6.common.docker.addons), 199
check_if_docker_daemon_is_running() (in module

vantage6.cli.utils), 155
cleanup() (DockerManager method), 115
cleanup() (DockerTaskManager method), 118
cleanup_tasks() (DockerManager method), 115
ClickLogger (class in vantage6.common), 196
Client (in module vantage6.client), 156
ColorStreamHandler (in module van-

tage6.common.colors), 203
config_exists() (AlgorithmStoreContext class

method), 150
config_exists() (AppContext class method), 190
config_exists() (NodeContext class method), 146
config_exists() (ServerContext class method), 149
config_file (AppContext property), 190
config_file_name (AppContext property), 190
Configuration (class in van-

tage6.common.configuration_manager),
188

configuration_wizard() (in module van-
tage6.cli.configuration_wizard), 153

ConfigurationManager (class in van-
tage6.common.configuration_manager),
188

configure_logger() (AppContext static method), 190
connect() (NetworkManager method), 201
connect_to_socket() (Node method), 113
connect_vpn() (VPNManager method), 120
ContainerKillListener (class in van-

tage6.common.docker.addons), 199
contains() (NetworkManager method), 201
create() (AlgorithmClient.Task method), 177
create() (AlgorithmStoreSubClient method), 172
create() (AlgorithmSubClient method), 170
create() (MockAlgorithmClient.Task method), 186
create() (StudySubClient method), 169
create() (UserClient.Collaboration method), 156

242 Index



vantage6

create() (UserClient.Node method), 158
create() (UserClient.Organization method), 159
create() (UserClient.Role method), 161
create() (UserClient.Task method), 163
create() (UserClient.User method), 165
create_network() (NetworkManager method), 202
create_new_rsa_key() (RSACryptor static method),

194
create_public_key_bytes() (RSACryptor static

method), 194
create_volume() (DockerManager method), 115
CryptorBase (class in vantage6.common.encryption),

193

D
databases (NodeContext property), 146
DatabaseType (class in van-

tage6.algorithm.tools.wrappers), 181
debug() (ClickLogger static method), 196
debug() (in module vantage6.common), 197
decrypt_result() (in module van-

tage6.node.proxy_server), 121
decrypt_str_to_bytes() (CryptorBase method), 193
decrypt_str_to_bytes() (RSACryptor method), 194
delete() (AlgorithmStoreSubClient method), 172
delete() (AlgorithmSubClient method), 171
delete() (NetworkManager method), 202
delete() (StudySubClient method), 169
delete() (UserClient.Collaboration method), 156
delete() (UserClient.Node method), 158
delete() (UserClient.Role method), 161
delete() (UserClient.Task method), 164
delete_network() (in module van-

tage6.common.docker.addons), 199
delete_volume_if_exists() (in module van-

tage6.common.docker.addons), 199
DeserializationException, 174
disconnect() (NetworkManager method), 202
docker_container_name (AlgorithmStoreContext

property), 150
docker_container_name (NodeContext property), 147
docker_container_name (ServerContext property),

149
docker_network_name (NodeContext property), 147
docker_squid_volume_name (NodeContext property),

147
docker_ssh_volume_name (NodeContext property),

147
docker_temporary_volume_name() (NodeContext

method), 147
docker_volume_name (NodeContext property), 147
docker_vpn_volume_name (NodeContext property),

148

DockerBaseManager (class in van-
tage6.node.docker.docker_base), 115

DockerManager (class in van-
tage6.node.docker.docker_manager), 115

DockerNodeContext (class in vantage6.node.context),
115

DockerTaskManager (class in van-
tage6.node.docker.task_manager), 118

DummyCryptor (class in vantage6.common.encryption),
194

E
echo() (in module vantage6.common), 197
emit() (_WinColorStreamHandler method), 204
encrypt_bytes_to_str() (CryptorBase method), 193
encrypt_bytes_to_str() (RSACryptor method), 195
error() (ClickLogger static method), 196
error() (in module vantage6.algorithm.tools.util), 187
error() (in module vantage6.common), 197
exit_gracefully() (ContainerKillListener method),

199
exit_vpn() (VPNManager method), 120

F
FILE

v6-server-cli-server-import command
line option, 135

find_config_file() (AppContext class method), 190
format() (_AnsiColorStreamHandler method), 203
forward_vpn_traffic() (VPNManager method), 120
from_external_config_file() (AlgorithmStoreCon-

text class method), 151
from_external_config_file() (AppContext class

method), 191
from_external_config_file() (BaseServerContext

class method), 151
from_external_config_file() (NodeContext class

method), 148
from_external_config_file() (ServerContext class

method), 149
from_file() (ConfigurationManager class method),

188
from_file() (NodeConfigurationManager class

method), 152
from_file() (ServerConfigurationManager class

method), 152
from_file() (TestingConfigurationManager class

method), 153
from_task() (AlgorithmClient.Result method), 176
from_task() (AlgorithmClient.Run method), 176
from_task() (MockAlgorithmClient.Result method),

185
from_task() (MockAlgorithmClient.Run method), 185
from_task() (UserClient.Result method), 160

Index 243



vantage6

from_task() (UserClient.Run method), 162

G
generate_apikey() (in module vantage6.common), 198
generate_private_key() (UserClient.Util method),

167
get() (AlgorithmClient.Collaboration method), 175
get() (AlgorithmClient.Node method), 175
get() (AlgorithmClient.Organization method), 175
get() (AlgorithmClient.Result method), 176
get() (AlgorithmClient.Run method), 176
get() (AlgorithmClient.Study method), 177
get() (AlgorithmClient.Task method), 178
get() (AlgorithmStoreSubClient method), 173
get() (AlgorithmSubClient method), 171
get() (ConfigurationManager method), 188
get() (MockAlgorithmClient.Collaboration method),

184
get() (MockAlgorithmClient.Node method), 184
get() (MockAlgorithmClient.Organization method), 185
get() (MockAlgorithmClient.Result method), 185
get() (MockAlgorithmClient.Run method), 186
get() (MockAlgorithmClient.Task method), 186
get() (StudySubClient method), 169
get() (UserClient.Collaboration method), 157
get() (UserClient.Node method), 158
get() (UserClient.Organization method), 159
get() (UserClient.Result method), 161
get() (UserClient.Role method), 161
get() (UserClient.Rule method), 162
get() (UserClient.Run method), 163
get() (UserClient.Task method), 164
get() (UserClient.User method), 165
get_addresses() (AlgorithmClient.VPN method), 178
get_child_addresses() (AlgorithmClient.VPN

method), 179
get_column_names() (DockerManager method), 116
get_column_names() (in module van-

tage6.algorithm.tools.wrappers), 181
get_config_path() (in module vantage6.common), 198
get_container() (in module van-

tage6.common.docker.addons), 199
get_container_ip() (NetworkManager method), 202
get_context() (in module vantage6.cli.context), 145
get_data_file() (AppContext method), 191
get_database_config() (in module van-

tage6.common), 198
get_database_uri() (AlgorithmStoreContext method),

151
get_database_uri() (BaseServerContext method),

151
get_database_uri() (NodeContext method), 148
get_database_uri() (ServerContext method), 150

get_env_var() (in module van-
tage6.algorithm.tools.util), 187

get_isolated_netw_ip() (DockerBaseManager
method), 115

get_method() (in module vantage6.node.proxy_server),
121

get_network() (in module van-
tage6.common.docker.addons), 199

get_networks_of_container() (in module van-
tage6.common.docker.addons), 200

get_num_nonempty_networks() (in module van-
tage6.common.docker.addons), 200

get_own_address() (AlgorithmClient.VPN method),
179

get_parent_address() (AlgorithmClient.VPN
method), 179

get_response_json_and_handle_exceptions() (in
module vantage6.node.proxy_server), 122

get_result() (DockerManager method), 116
get_results() (DockerTaskManager method), 118
get_server_config_name() (in module van-

tage6.common.docker.addons), 200
get_server_health() (UserClient.Util method), 167
get_server_version() (UserClient.Util method), 167
get_sibling_addresses() (AlgorithmClient.VPN

method), 179
get_task_and_add_to_queue() (Node method), 113
get_vpn_ip() (VPNManager method), 120

H
has_connection() (VPNManager method), 120
has_task_failed() (in module van-

tage6.common.task_status), 203
has_task_finished() (in module van-

tage6.common.task_status), 203

I
id_ (WhoAmI attribute), 196
info() (ClickLogger static method), 196
info() (in module vantage6.algorithm.tools.util), 187
info() (in module vantage6.common), 198
initialize() (AppContext method), 191
initialize() (Node method), 113
INST_CONFIG_MANAGER (AlgorithmStoreContext at-

tribute), 150
INST_CONFIG_MANAGER (AppContext attribute), 189
INST_CONFIG_MANAGER (NodeContext attribute), 146
INST_CONFIG_MANAGER (ServerContext attribute), 149
instance_folders() (AppContext static method), 192
instance_folders() (DockerNodeContext static

method), 115
is_docker_image_allowed() (DockerManager

method), 116
is_empty (ConfigurationManager property), 189

244 Index



vantage6

is_finished() (DockerTaskManager method), 118
is_ip_address() (in module vantage6.common), 198
is_isolated_interface() (VPNManager static

method), 120
is_running() (DockerManager method), 116
is_running() (RabbitMQManager method), 154
is_valid (Configuration property), 188

K
kill() (UserClient.Task method), 164
kill_containers() (Node method), 113
kill_selected_tasks() (DockerManager method),

117
kill_tasks() (DockerManager method), 117
kill_tasks() (UserClient.Node method), 158

L
link_container_to_network() (DockerManager

method), 117
list() (AlgorithmClient.Organization method), 175
list() (AlgorithmClient.Study method), 177
list() (AlgorithmStoreSubClient method), 173
list() (AlgorithmSubClient method), 172
list() (MockAlgorithmClient.Organization method),

185
list() (StudySubClient method), 169
list() (UserClient.Collaboration method), 157
list() (UserClient.Node method), 158
list() (UserClient.Organization method), 160
list() (UserClient.Role method), 161
list() (UserClient.Rule method), 162
list() (UserClient.Run method), 163
list() (UserClient.Task method), 164
list() (UserClient.User method), 165
load() (ConfigurationManager method), 189
load_csv_data() (in module van-

tage6.algorithm.tools.wrappers), 181
load_data() (in module van-

tage6.algorithm.tools.wrappers), 182
load_excel_data() (in module van-

tage6.algorithm.tools.wrappers), 182
load_input() (in module van-

tage6.algorithm.tools.wrap), 183
load_parquet_data() (in module van-

tage6.algorithm.tools.wrappers), 182
load_sparql_data() (in module van-

tage6.algorithm.tools.wrappers), 182
load_sql_data() (in module van-

tage6.algorithm.tools.wrappers), 183
log_file (AppContext property), 192
log_file_name() (AppContext method), 192
logger_name() (in module vantage6.common), 198
login_to_registries() (DockerManager method),

117

LogLevel (class in vantage6.client.utils), 174

M
make_proxied_request() (in module van-

tage6.node.proxy_server), 122
make_request() (in module van-

tage6.node.proxy_server), 122
MockAlgorithmClient (class in van-

tage6.algorithm.tools.mock_client), 184
MockAlgorithmClient.Collaboration (class in van-

tage6.algorithm.tools.mock_client), 184
MockAlgorithmClient.Node (class in van-

tage6.algorithm.tools.mock_client), 184
MockAlgorithmClient.Organization (class in van-

tage6.algorithm.tools.mock_client), 185
MockAlgorithmClient.Result (class in van-

tage6.algorithm.tools.mock_client), 185
MockAlgorithmClient.Run (class in van-

tage6.algorithm.tools.mock_client), 185
MockAlgorithmClient.SubClient (class in van-

tage6.algorithm.tools.mock_client), 186
MockAlgorithmClient.Task (class in van-

tage6.algorithm.tools.mock_client), 186
module

vantage6.algorithm.client.__init__, 174
vantage6.algorithm.tools.mock_client, 184
vantage6.algorithm.tools.util, 187
vantage6.algorithm.tools.wrap, 183
vantage6.algorithm.tools.wrappers, 181
vantage6.cli.configuration_manager, 152
vantage6.cli.configuration_wizard, 153
vantage6.cli.context, 145
vantage6.cli.context.algorithm_store, 150
vantage6.cli.context.base_server, 151
vantage6.cli.context.node, 146
vantage6.cli.context.server, 148
vantage6.cli.rabbitmq, 155
vantage6.cli.rabbitmq.queue_manager, 154
vantage6.cli.utils, 155
vantage6.client, 156
vantage6.client.exceptions, 174
vantage6.client.subclients.algorithm, 170
vantage6.client.subclients.algorithm_store,

172
vantage6.client.subclients.study, 168
vantage6.client.utils, 174
vantage6.common, 196
vantage6.common.colors, 203
vantage6.common.configuration_manager,

188
vantage6.common.context, 189
vantage6.common.docker.addons, 199
vantage6.common.docker.network_manager,

201

Index 245



vantage6

vantage6.common.encryption, 193
vantage6.common.exceptions, 204
vantage6.common.task_status, 203
vantage6.node, 111
vantage6.node.cli.node, 123
vantage6.node.docker.exceptions, 121
vantage6.node.proxy_server, 121

N
name (WhoAmI attribute), 196
NetworkManager (class in van-

tage6.common.docker.network_manager),
201

Node (class in vantage6.node), 112
node_configuration_questionaire() (in module

vantage6.cli.configuration_wizard), 153
NodeConfiguration (class in van-

tage6.cli.configuration_manager), 152
NodeConfigurationManager (class in van-

tage6.cli.configuration_manager), 152
NodeContext (class in vantage6.cli.context.node), 146

O
organization_id (WhoAmI attribute), 196
organization_name (WhoAmI attribute), 197

P
PermanentAlgorithmStartFail, 121
print_log_header() (AppContext method), 192
private_key_filename() (Node method), 113
prompt_config_name() (in module vantage6.cli.utils),

155
proxy() (in module vantage6.node.proxy_server), 122
proxy_result() (in module van-

tage6.node.proxy_server), 122
proxy_results() (in module van-

tage6.node.proxy_server), 123
proxy_task() (in module vantage6.node.proxy_server),

123
public_key_bytes (RSACryptor property), 195
public_key_str (RSACryptor property), 195
pull() (DockerTaskManager method), 119
pull_image() (in module van-

tage6.common.docker.addons), 200
put() (ConfigurationManager method), 189

R
RabbitMQManager (class in van-

tage6.cli.rabbitmq.queue_manager), 154
refresh_token() (AlgorithmClient method), 180
remove_container() (in module van-

tage6.common.docker.addons), 200
remove_container_if_exists() (in module van-

tage6.common.docker.addons), 201

remove_file() (in module vantage6.cli.utils), 155
remove_organization() (StudySubClient method),

170
remove_organization() (UserClient.Collaboration

method), 157
remove_subnet_mask() (in module van-

tage6.common.docker.network_manager),
202

report_status() (DockerTaskManager method), 119
request() (AlgorithmClient method), 180
reset_my_password() (UserClient.Util method), 167
reset_two_factor_auth() (UserClient.Util method),

167
Result (class in van-

tage6.node.docker.docker_manager), 118
RSACryptor (class in vantage6.common.encryption), 194
run() (DockerManager method), 117
run() (DockerTaskManager method), 119
run_forever() (Node method), 113
running_in_docker() (in module van-

tage6.common.docker.addons), 201

S
save() (ConfigurationManager method), 189
select_configuration_questionaire() (in module

vantage6.cli.configuration_wizard), 154
select_context_class() (in module van-

tage6.cli.context), 145
send_vpn_ip_to_server() (VPNManager method),

121
server_configuration_questionaire() (in module

vantage6.cli.configuration_wizard), 154
ServerConfiguration (class in van-

tage6.cli.configuration_manager), 152
ServerConfigurationManager (class in van-

tage6.cli.configuration_manager), 152
ServerContext (class in vantage6.cli.context.server),

148
set() (AlgorithmStoreSubClient method), 173
set_folders() (AppContext method), 192
set_folders() (DockerNodeContext method), 115
set_my_password() (UserClient.Util method), 167
set_two_factor_auth() (UserClient.Util method),

168
setup_collaboration() (UserClient method), 168
setup_encryption() (Node method), 113
setup_logging() (AppContext method), 192
setup_squid_proxy() (Node method), 113
setup_ssh_tunnels() (Node method), 114
setup_vpn_connection() (Node method), 114
share_node_details() (Node method), 114
Singleton (class in vantage6.common), 196
split_rabbitmq_uri() (in module van-

tage6.cli.rabbitmq), 155

246 Index



vantage6

start() (RabbitMQManager method), 154
stop_container() (in module van-

tage6.common.docker.addons), 201
str_to_bytes() (CryptorBase static method), 194
StudySubClient (class in van-

tage6.client.subclients.study), 168
sync_task_queue_with_server() (Node method),

114

T
TaskStatus (class in vantage6.common.task_status),

203
TestConfiguration (class in van-

tage6.cli.configuration_manager), 153
TestingConfigurationManager (class in van-

tage6.cli.configuration_manager), 153
type_ (WhoAmI attribute), 197
type_data_folder() (AppContext static method), 193
type_data_folder() (NodeContext static method), 148

U
UnknownAlgorithmStartFail, 121
update() (AlgorithmStoreSubClient method), 173
update() (StudySubClient method), 170
update() (UserClient.Collaboration method), 157
update() (UserClient.Node method), 159
update() (UserClient.Organization method), 160
update() (UserClient.Role method), 162
update() (UserClient.User method), 166
UserClient (class in vantage6.client), 156
UserClient.Collaboration (class in vantage6.client),

156
UserClient.Node (class in vantage6.client), 158
UserClient.Organization (class in vantage6.client),

159
UserClient.Result (class in vantage6.client), 160
UserClient.Role (class in vantage6.client), 161
UserClient.Rule (class in vantage6.client), 162
UserClient.Run (class in vantage6.client), 162
UserClient.Task (class in vantage6.client), 163
UserClient.User (class in vantage6.client), 165
UserClient.Util (class in vantage6.client), 166

V
v6-algorithm-store-cli-algo-store-attach

command line option
--config, 139
--name, 139
--system, 139
--user, 139
-c, 139
-n, 139

v6-algorithm-store-cli-algo-store-files
command line option

--config, 139
--name, 139
--system, 139
--user, 139
-c, 139
-n, 139

v6-algorithm-store-cli-algo-store-new
command line option

--name, 140
--system, 140
--user, 140
-n, 140

v6-algorithm-store-cli-algo-store-start
command line option

--attach, 140
--auto-remove, 140
--config, 140
--detach, 140
--image, 140
--ip, 140
--keep, 140
--mount-src, 140
--name, 140
--port, 140
--system, 140
--user, 140
-c, 140
-i, 140
-n, 140
-p, 140

v6-algorithm-store-cli-algo-store-stop
command line option

--all, 141
--config, 141
--name, 141
--system, 141
--user, 141
-c, 141
-n, 141

v6-dev-create-demo-network command line
option

--extra-node-config, 142
--extra-server-config, 142
--image, 142
--name, 142
--num-nodes, 142
--server-port, 142
--server-url, 142
-i, 142
-n, 142
-p, 142

v6-dev-remove-demo-network command line
option

--config, 142

Index 247



vantage6

--name, 142
--system, 142
--user, 142
-c, 142
-n, 142

v6-dev-start-demo-network command line
option

--config, 143
--name, 143
--node-image, 143
--server-image, 143
--system, 143
--user, 143
-c, 143
-n, 143

v6-dev-stop-demo-network command line
option

--config, 143
--name, 143
--system, 143
--user, 143
-c, 143
-n, 143

v6-node-cli-node-attach command line option
--name, 129
--system, 129
--user, 129
-n, 129

v6-node-cli-node-create-private-key command
line option

--config, 129
--name, 129
--no-upload, 129
--organization-name, 129
--overwrite, 129
--system, 129
--user, 129
-c, 129
-n, 129
-o, 129

v6-node-cli-node-files command line option
--name, 130
--system, 130
--user, 130
-n, 130

v6-node-cli-node-new-configuration command
line option

--name, 130
--system, 130
--user, 130
-n, 130

v6-node-cli-node-remove command line option
--force, 131
--name, 131

--system, 131
--user, 131
-f, 131
-n, 131

v6-node-cli-node-set-api-key command line
option

--api-key, 131
--name, 131
--system, 131
--user, 131
-n, 131

v6-node-cli-node-start command line option
--attach, 132
--auto-remove, 132
--config, 132
--detach, 132
--force-db-mount, 132
--image, 132
--keep, 132
--mount-src, 132
--name, 132
--system, 132
--user, 132
-c, 132
-i, 132
-n, 132

v6-node-cli-node-stop command line option
--all, 132
--force, 132
--name, 132
--system, 132
--user, 132
-n, 132

v6-node-cli-node-version command line
option

--name, 133
--system, 133
--user, 133
-n, 133

v6-server-cli-server-attach command line
option

--name, 133
--system, 133
--user, 133
-n, 133

v6-server-cli-server-files command line
option

--config, 134
--name, 134
--system, 134
--user, 134
-c, 134
-n, 134

248 Index



vantage6

v6-server-cli-server-import command line
option

--auto-remove, 134
--config, 135
--drop-all, 134
--image, 134
--keep, 134
--mount-src, 134
--name, 135
--system, 135
--user, 135
--wait, 134
-c, 135
-i, 134
-n, 135
FILE, 135

v6-server-cli-server-new command line
option

--name, 135
--system, 135
--user, 135
-n, 135

v6-server-cli-server-remove command line
option

--config, 136
--force, 136
--name, 136
--system, 136
--user, 136
-c, 136
-f, 136
-n, 136

v6-server-cli-server-shell command line
option

--config, 136
--name, 136
--system, 136
--user, 136
-c, 136
-n, 136

v6-server-cli-server-start command line
option

--attach, 137
--auto-remove, 137
--config, 137
--detach, 137
--image, 137
--ip, 137
--keep, 137
--mount-src, 137
--name, 137
--port, 137
--rabbitmq-image, 137
--system, 137

--ui-port, 137
--user, 137
--with-rabbitmq, 137
--with-ui, 137
-c, 137
-i, 137
-n, 137
-p, 137

v6-server-cli-server-stop command line
option

--all, 138
--name, 138
--system, 138
--user, 138
-n, 138

v6-server-cli-server-version command line
option

--name, 138
--system, 138
--user, 138
-n, 138

v6-test-cli-test-features command line
option

--all-nodes, 144
--api-path, 144
--collaboration, 144
--host, 144
--no-vpn, 144
--online-only, 144
--organizations, 144
--password, 144
--port, 144
--private-key, 144
--username, 144
-o, 144

v6-test-cli-test-integration command line
option

--extra-node-config, 145
--extra-server-config, 145
--image, 145
--keep, 145
--name, 145
--server-url, 145
-i, 145
-n, 145

vantage6.algorithm.client.__init__
module, 174

vantage6.algorithm.tools.mock_client
module, 184

vantage6.algorithm.tools.util
module, 187

vantage6.algorithm.tools.wrap
module, 183

vantage6.algorithm.tools.wrappers

Index 249



vantage6

module, 181
vantage6.cli.configuration_manager

module, 152
vantage6.cli.configuration_wizard

module, 153
vantage6.cli.context

module, 145
vantage6.cli.context.algorithm_store

module, 150
vantage6.cli.context.base_server

module, 151
vantage6.cli.context.node

module, 146
vantage6.cli.context.server

module, 148
vantage6.cli.rabbitmq

module, 155
vantage6.cli.rabbitmq.queue_manager

module, 154
vantage6.cli.utils

module, 155
vantage6.client

module, 156
vantage6.client.exceptions

module, 174
vantage6.client.subclients.algorithm

module, 170
vantage6.client.subclients.algorithm_store

module, 172
vantage6.client.subclients.study

module, 168
vantage6.client.utils

module, 174
vantage6.common

module, 196
vantage6.common.colors

module, 203
vantage6.common.configuration_manager

module, 188
vantage6.common.context

module, 189
vantage6.common.docker.addons

module, 199
vantage6.common.docker.network_manager

module, 201
vantage6.common.encryption

module, 193
vantage6.common.exceptions

module, 204
vantage6.common.task_status

module, 203
vantage6.node

module, 111
vantage6.node.cli.node

module, 123
vantage6.node.docker.exceptions

module, 121
vantage6.node.proxy_server

module, 121
verify_public_key() (RSACryptor method), 195
vnode-local-files command line option

--name, 124
--system, 124
--user, 124
-n, 124

vnode-local-new command line option
--name, 124
--system, 124
--user, 124
-n, 124

vnode-local-start command line option
--config, 125
--dockerized, 125
--name, 125
--system, 125
--user, 125
-c, 125
-n, 125
-non-dockerized, 125

VPNManager (class in van-
tage6.node.docker.vpn_manager), 120

W
wait_for_results() (AlgorithmClient method), 180
wait_for_results() (MockAlgorithmClient method),

187
wait_for_results() (UserClient method), 168
warn() (ClickLogger static method), 196
warn() (in module vantage6.algorithm.tools.util), 187
warning() (in module vantage6.common), 199
WhoAmI (class in vantage6.common), 196
wrap_algorithm() (in module van-

tage6.algorithm.tools.wrap), 183

250 Index


	What is vantage6?
	Overview of this documentation
	Vantage6 resources
	Index
	Introduction
	Vantage6 components
	Vantage6 resources
	A simple federated average algorithm
	How to run the algorithm in vantage6
	Running your own algorithms

	Architecture
	Network Actors
	Server
	Data Station
	User or Application
	Learn more?


	User guide
	User interface
	Python client
	Requirements
	Install
	Use
	Overview
	Authentication
	Creating an organization
	Creating a collaboration
	Registering a node
	Creating a task


	R client
	Install
	Use
	Example


	API

	Node admin guide
	Introduction
	Requirements
	Python
	Docker

	Install
	Use
	Quick start
	Available commands
	Local test setup


	Configure
	How to create a configuration file
	Where is my configuration file?
	All configuration options
	Configuration file location
	Security
	Logging


	Server admin guide
	Introduction
	Requirements
	Python
	Docker

	Install
	Local (test) Installation
	Hosting your server

	Deploy
	NGINX
	Docker compose

	Install optional components
	User Interface
	Docker registry
	Harbor
	Docker Hub

	EduVPN
	RabbitMQ
	SMTP server

	Use
	Quick start
	Available commands
	Local test setup
	Batch import
	Testing

	Configure
	How to create a configuration file
	Where is my configuration file?
	All configuration options
	Configuration file location
	Logging

	Permission management
	Authentication types
	Permission rules
	Roles

	Shell
	Organizations
	Roles and Rules
	Users
	Collaborations
	Nodes
	Tasks and Results


	Algorithm store admin guide
	Introduction
	What is an algorithm store?
	Linking algorithm stores

	Requirements
	Python
	Docker

	Install
	Local (test) Installation
	Hosting your algorithm store

	Deploy
	NGINX
	Docker compose

	Use
	Quick start
	Available commands

	Configure
	How to create a configuration file
	Where is my configuration file?
	All configuration options
	Configuration file location
	Logging


	Algorithm Development
	Algorithm concepts
	Algorithm structure
	Input & output
	File mounts

	Wrappers
	Child containers
	Networking
	VPN connection

	Cross language

	Algorithm development step-by-step guide
	Starting point
	Setting up your environment
	Implementing your algorithm
	Environment variables
	Returning results
	Example functions
	Central function
	Partial function

	Testing your algorithm
	Writing documentation
	Package & distribute
	Calling your algorithm from vantage6
	Updating your algorithm

	Algorithm code structure
	Defining functions
	Implementing the algorithm functions
	Algorithm wrappers
	VPN
	Dockerfile structure

	Classic Tutorial
	Mathematical decomposition
	Federated implementation
	Federated part
	Central part
	Local testing

	Vantage6 integration
	📂Algorithm Structure
	setup.py
	Dockerfile
	__init__.py

	Local testing
	Building and Distributing



	Feature descriptions
	Server features
	Two-factor authentication
	Setting up 2FA for a user
	Using 2FA
	Resetting 2FA

	Horizontal scaling
	How it works
	How to use
	Deploy


	API response structure

	Node features
	Whitelisting
	Setting up whitelisting
	Implementation details / Notes

	SSH Tunnel
	Setting up SSH tunneling
	1. Create a new SSH key pair
	2. Add the public key to the remote server
	3. Add the SSH tunnel to your node configuration

	Using the SSH tunnel

	Linked docker containers

	Algorithm features
	Algorithm wrappers
	Algorithm container isolation

	Communication between components
	SocketIO connection
	Permissions
	Usage in vantage6

	End to end encryption
	Algorithm-to-algorithm VPN comunication
	When to use
	How to use
	Installing a VPN server
	Configuring the vantage6 server
	Configuring the vantage6 node
	How to test the VPN connection
	Use VPN in your algorithm

	How does it work?



	Developer community
	Contribute
	Support questions
	Reporting issues
	Security vulnerabilities
	Community Meetings
	Submitting patches
	Setup your environment
	Coding
	Code style
	Unit tests & coverage
	Verifying local code changes
	Pull Request
	Documentation

	Roles in the vantage6 community
	Community access tiers


	Documentation
	How this documentation is created
	API Documenation with OAS3+

	Release
	Version format
	Testing a release
	Create a release
	The release pipeline
	Distribute release
	User Interface release
	Post-release checks


	Function documentation
	Node
	vantage6.node.Node
	vantage6.node.docker.docker_base
	vantage6.node.docker.docker_manager
	vantage6.node.docker.task_manager
	vantage6.node.docker.vpn_manager
	vantage6.node.docker.exceptions
	vantage6.node.proxy_server
	vantage6.node.cli.node
	vnode-local
	files
	list
	new
	start
	version



	Server
	Main server class
	vantage6.server.ServerApp

	Starting the server
	vantage6.server.run_server
	vantage6.server.run_dev_server

	Permission management
	vantage6.server.model.rule.Scope
	vantage6.server.model.rule.Operation
	vantage6.server.model.permission.RuleCollection
	vantage6.server.permission.PermissionManager

	Socket functionality
	vantage6.server.websockets.DefaultSocketNamespace

	API endpoints
	vantage6.server.resource
	vantage6.server.resource.common.output_schema
	vantage6.server.resource.common.auth_helper
	vantage6.server.resource.common.swagger_template

	SQLAlchemy models
	vantage6.server.model.base
	Database models for the API resources
	vantage6.server.model.algorithm_port.AlgorithmPort
	vantage6.server.model.authenticatable.Authenticatable
	vantage6.server.model.collaboration.Collaboration
	vantage6.server.model.node.Node
	vantage6.server.model.organization.Organization
	vantage6.server.model.run.Run
	vantage6.server.model.role.Role
	vantage6.server.model.rule.Rule
	vantage6.server.model.task.Task
	vantage6.server.model.user.User

	Database models that link resources together
	vantage6.server.model.Member
	vantage6.server.model.permission
	vantage6.server.model.role_rule_association


	Database utility functions
	vantage6.server.db

	Mail service
	vantage6.server.mail_service

	Default roles
	vantage6.server.default_roles

	Custom server exceptions
	vantage6.server.exceptions


	Algorithm store
	Main class of algorithm store
	vantage6.algorithm.store

	API endpoints
	vantage6.algorithm.store.resource
	vantage6.algorithm.store.resource.schema.output_schema
	vantage6.algorithm.store.resource.schema.input_schema

	SQLAlchemy models
	vantage6.algorithm.store.model.base
	Database models for the API resources
	vantage6.algorithm.store.model.algorithm
	vantage6.algorithm.store.model.argument
	vantage6.algorithm.store.model.database
	vantage6.algorithm.store.model.function
	vantage6.algorithm.store.model.vantage6_server



	Command line interface
	Node CLI
	vantage6.cli.node
	v6 node
	cli-node-attach
	cli-node-clean
	cli-node-create-private-key
	cli-node-files
	cli-node-list
	cli-node-new-configuration
	cli-node-remove
	cli-node-set-api-key
	cli-node-start
	cli-node-stop
	cli-node-version


	Server CLI
	v6 server
	cli-server-attach
	cli-server-configuration-list
	cli-server-files
	cli-server-import
	cli-server-new
	cli-server-remove
	Parameters
	cli-server-shell
	cli-server-start
	cli-server-stop
	cli-server-version


	Algorithm store CLI
	v6 algorithm-store
	cli-algo-store-attach
	cli-algo-store-configuration-list
	cli-algo-store-files
	cli-algo-store-new
	cli-algo-store-start
	cli-algo-store-stop


	Local test setup CLI
	v6 dev
	create-demo-network
	remove-demo-network
	start-demo-network
	stop-demo-network


	Run test algorithms CLI
	v6 test
	cli-test-features
	cli-test-integration


	vantage6.cli.context
	vanatge6.cli.configuration_manager
	vantage6.cli.configuration_wizard
	vanatge6.cli.rabbitmq.queue_manager
	vanatge6.cli.rabbitmq
	vantage6.cli.utils

	Python client
	User Client
	vantage6.client
	vantage6.client.utils

	Custom client exceptions
	vantage6.client.exceptions


	Algorithm client and tools
	Algorithm Client
	vantage6.algorithm.client

	Algorithm tools
	vantage6.tools.wrappers
	vantage6.tools.wrap
	vantage6.tools.mock_client
	vantage6.tools.util


	Backend common
	Services resources base
	vantage6.backend.common.services_resources.BaseServicesResources
	vantage6.backend.common.resource.output_schema.BaseHATEOASModelSchema
	vantage6.backend.common.resource.pagination


	Common functions (vantage6-common)
	vantage6.common.configuration_manager
	vantage6.common.context
	vantage6.common.encryption
	vantage6.common
	vantage6.common.docker.addons
	vantage6.common.docker.network_manager
	vantage6.common.task_status
	vantage6.common.colors
	vantage6.common.exceptions


	Glossary
	Release notes
	4.4.0
	4.3.4
	4.3.3
	4.3.2
	4.3.1
	4.3.0
	4.2.3
	4.2.2
	4.2.1
	4.2.0
	4.1.3
	4.1.2
	4.1.1
	4.1.0
	4.0.3
	4.0.2
	4.0.1
	4.0.0
	3.11.1
	3.11.0
	3.10.4
	3.10.3
	3.10.1
	3.10.0
	3.9.0
	3.8.8
	3.8.7
	3.8.6
	3.8.3 - 3.8.5
	3.8.2
	3.8.1
	3.8.0
	3.7.3
	3.7.2
	3.7.1
	3.7.0
	3.6.1
	3.5.2
	3.5.1
	3.5.0
	3.4.2
	3.4.0 & 3.4.1
	3.3.7
	3.3.6
	3.3.5
	3.3.3
	3.3.2
	3.3.1
	3.3.0
	3.2.0
	3.1.0
	3.0.0
	2.3.0 - 2.3.4
	2.2.0
	2.1.2 & 2.1.3
	2.1.1
	2.1.0
	2.0.0.post1
	2.0.0
	1.2.3
	1.2.2
	1.2.1
	1.2.0
	1.1.0
	1.0.0

	Partners

	Python Module Index
	Index

