

Introduction

What is vantage6?

Vantage6 stands for privacy preserving
federated learning infrastructure for
secure insight exchange.

 Concepts

Concepts

Architecture

In vantage6, a client can pose a question to the server, which is then
delivered as an algorithm to the node (Fig. 1).
When the algorithm completes, the node sends the results back to the client via
the server. An algorithm may be enabled to communicate directly with twin
algorithms running on other nodes.

[image: Architecture overview]

Fig. 1 Vantage6 has a client-server architecture. (A) The client is used by the
researcher to create computation requests. It is also used to manage users,
organizations and collaborations. (B) The server contains users,
organizations, collaborations, tasks and their results. (C) The nodes have
access to data and handle computation requests from the server.

Conceptually, vantage6 consists of the following parts:

	A (central) server that coordinates communication with clients and nodes.
The server is in charge of processing tasks as well as handling
administrative functions such as authentication and authorization.

	One or more node(s) that have access to data and execute algorithms

	Users (i.e. researchers or other applications) that request computations
from the nodes via the client

	Organizations that are interested in collaborating. Each user belongs to
one of these organizations.

	A Docker registry that functions as database of algorithms

On a technical level, vantage6 may be seen as a container
orchestration tool for privacy preserving analyses. It deploys a network of
containerized applications that together ensure insights can be exchanged
without sharing record-level data.

Entities

There are several entities in vantage6, such as users, organizations,
tasks, etc. The following statements should help you understand their
relationships.

	A collaboration is a collection of one or more
organizations.

	For each collaboration, each participating organization needs a
node to compute tasks.

	Each organization can have users who can perform certain
actions.

	The permissions of the user are defined by the assigned rules.

	It is possible to collect multiple rules into a role, which can
also be assigned to a user.

	Users can create tasks for one or more organizations within a
collaboration.

	A task should produce a result for each organization involved in
the task.

The following schema is a simplified version of the database:

[image: ../_images/db_model.png]

Fig. 2 Simplified database model

Network Actors

As we saw in Figure Fig. 1, vantage6 consists of a
central server, a number of nodes and a client. This section explains in some
more detail what these network actors are responsible for.

Server

Note

When we refer to the server, this is not just the vantage6-server, but
also other infrastructure components that the vantage6 server relies on.

The server is responsible for coordinating all communication in the vantage6
network. It consists of several components:

	vantage6 server
	Contains the users, organizations, collaborations, tasks and their results.
It handles authentication and authorization to the system and is the
central point of contact for clients and nodes.
.. todo For more details see `vantage6-server`_.

	Docker registry
	Contains algorithms stored in Images [https://en.wikipedia.org/wiki/OS-level_virtualization]
which can be used by clients to request a computation. The node will
retrieve the algorithm from this registry and execute it.

	VPN server (optionally)
	If algorithms need to be able to engage in peer-to-peer communication, a
VPN server can be set up to help them do so. This is usually the case when
working with MPC, and is also often required for machine learning
applications.

	RabbitMQ message queue (optionally)
	The vantage6 server uses the socketIO protocol to communicate between
server, nodes and clients. If there are multiple instances of the vantage6
server, it is important that the messages are communicated to all relevant
actors, not just the ones that a certain server instance is connected to.
RabbitMQ is therefore used to synchronize the messages between multiple
vantage6 server instances.

Data Station

	vantage6 node
	The node is responsible for executing the algorithms on the local data.
It protects the data by allowing only specified algorithms to be executed after
verifying their origin. The node is responsible for picking up the
task, executing the algorithm and sending the results back to the server. The
node needs access to local data. For more details see the
technical documentation of the node.

	database
	The database may be in any format that the algorithms relevant to your use
case support. There is tooling available for CSV, Parquet [https://parquet.apache.org/]
and SPARQL [https://en.wikipedia.org/wiki/SPARQL]. There are other
data-adapters (e.g. OMOP [https://www.ohdsi.org/data-standardization/] and
FHIR [https://hl7.org/fhir/]) in development.

User or Application

A user or application interacts with the vantage6-server. They can create
tasks and retrieve their results, or manage entities at the server (i.e.
creating or editing users, organizations and collaborations). This can be done
using clients or via the user interface.

End to end encryption

Encryption in vantage6 is handled at organization level. Whether
encryption is used or not, is set at collaboration level. All the nodes
in the collaboration need to agree on this setting. You can enable or
disable encryption in the node configuration file, see the example in
All configuration options.

[image: ../_images/encryption.png]

Fig. 3 Encryption takes place between organizations therefore all nodes and
users from the a single organization should use the same private key.

The encryption module encrypts data so that the server is unable to read
communication between users and nodes. The only messages that go from
one organization to another through the server are computation requests
and their results. Only the algorithm input and output are encrypted.
Other metadata (e.g. time started, finished, etc), can be read by the
server.

The encryption module uses RSA keys. The public key is uploaded to the
vantage6-server. Tasks and other users can use this public key (this is
automatically handled by the python-client and R-client) to send
messages to the other parties.

Note

The RSA key is used to create a shared secret which is used for encryption
and decryption of the payload.

When the node starts, it checks that the public key stored at the server
is derived from the local private key. If this is not the case, the node
will replace the public key at the server.

Warning

If an organization has multiple nodes and/or users, they must use the same
private key.

In case you want to generate a new private key, you can use the command
vnode create-private-key. If a key already exists at the local
system, the existing key is reused (unless you use the --force
flag). This way, it is easy to configure multiple nodes to use the same
key.

It is also possible to generate the key yourself and upload it by using the
endpoint https://SERVER[/api_path]/organization/<ID>.

 1. User guide

1. User guide

In this section of the documentation, we explain how you can interact with
vantage6 servers and nodes as a user.

There are four ways in which you can interact with the central server: the
User interface (UI), the Python client, the R client, and the
API. In the sections below, we describe
how to use each of these methods, and what you need to install (if anything).

For most use cases, we recommend to use the User interface, as this requires
the least amount of effort. If you want to automate your workflow, we recommend
using the Python client.

Warning

Note that for some algorithms, tasks cannot yet be created using the UI,
or the results cannot be retrieved. This is because these algorithms have
Python-specific datatypes that cannot be decoded in the UI. In this case,
you will need to use the Python client to create the task and read the
results.

Warning

Depending on your algorithm it may be required to use a specific
language to post a task and retrieve the results. This could happen when
the output of an algorithm contains a language specific datatype and or
serialization.

	1.1. User interface

	1.2. Python client
	1.2.1. Requirements

	1.2.2. Install

	1.2.3. Use
	Overview

	Authentication

	Creating an organization

	Creating a collaboration

	Registering a node

	Creating a task

	1.3. R client
	1.3.1. Install

	1.3.2. Use
	Example

	1.4. API

 1.1. User interface

1.1. User interface

The User Interface (UI) is a website where you can login with your vantage6
user account. Which website this is, depends on the vantage6 server you are
using. If you are using the Petronas server, go to
https://portal.petronas.vantage6.ai and login with your user account.

Using the UI should be relatively straightforward. There are buttons
that should help you e.g. create a task or change your password. If
anything is unclear, please contact us via
Discord [https://discord.com/invite/yAyFf6Y].

[image: ../_images/ui-screenshot.png]

Fig. 1.1 Screenshot of the vantage6 UI

Note

If you are a server administrator and want to set up a user interface, see
this section on deploying a UI.

 1.2. Python client

1.2. Python client

The Python client is the recommended way to interact with the vantage6 server
for tasks that you want to automate. It is a Python library that facilitates
communication with the vantage6 server, e.g. by encrypting and decrypting data
for tasks for you.

The Python client aims to completely cover the vantage6 server communication.
It can create computation tasks and collect their
results, manage organizations, collaborations, users, etc. Under the hood,
the Python client talks to the server API to achieve this.

1.2.1. Requirements

You need Python to use the Python client. We recommend using Python 3.10, as
the client has been tested with this version. For higher versions, it may be
difficult to install the dependencies.

Warning

If you use a vantage6 version older than 3.8.0, you should use Python 3.7
instead of Python 3.10.

1.2.2. Install

It is important to install the Python client with the same version as the
vantage6 server you are talking to. Check your server version by going to
https://<server_url>/version (e.g. https://petronas.vantage6.ai/version
or http://localhost:5000/api/version) to find its version.

Then you can install the vantage6-client with:

pip install vantage6==<version>

where you add the version you want to install. You may also leave out
the version to install the most recent version.

1.2.3. Use

First, we give an overview of the client. From the section Authentication
onwards, there is example code of how to login with the client, and then
create organizations, tasks etc.

Overview

The Python client contains groups of commands per resource type. For example,
the group client.user has the following commands:

	client.user.list(): list all users

	client.user.create(username, password, ...): create a new user

	client.user.delete(<id>): delete a user

	client.user.get(<id>): get a user

You can see how to use these methods by using help(...) , e.g.
help(client.task.create) will show you the parameters needed to create a
new user:

help(client.task.create)
#Create a new task
#
Parameters

collaboration : int
Id of the collaboration to which this task belongs
organizations : list
Organization ids (within the collaboration) which need
to execute this task
name : str
Human readable name
image : str
Docker image name which contains the algorithm
description : str
Human readable description
input : dict
Algorithm input
data_format : str, optional
IO data format used, by default LEGACY
database: str, optional
Name of the database to use. This should match the key
in the node configuration files. If not specified the
default database will be tried.
#
Returns

dict
Containing the task information

The following groups (related to the Components) of methods are
available. They usually have list(), create(), delete()
and get() methods attached - except where they are not relevant (for
example, a rule that gives a certain permission cannot be deleted).

	client.user

	client.organization

	client.rule

	client.role

	client.collaboration

	client.task

	client.result

	client.node

Finally, the class client.util contains some utility functions, for example
to check if the server is up and running or to change your own password.

Authentication

This section and the following sections introduce some minimal examples for
administrative tasks that you can perform with our
Python client. We start by authenticating.

To authenticate, we create a config file to store our login information.
We do this so we do not have to define the server_url,
server_port and so on every time we want to use the client.
Moreover, it enables us to separate the sensitive information (login
details, organization key) that you do not want to make publicly
available, from other parts of the code you might write later (e.g. on
submitting particular tasks) that you might want to share publicly.

config.py

server_url = "https://MY VANTAGE6 SERVER" # e.g. https://petronas.vantage6.ai or
 # http://localhost for a local dev server
server_port = 443 # This is specified when you first created the server
server_api = "" # This is specified when you first created the server

username = "MY USERNAME"
password = "MY PASSWORD"

organization_key = "FILEPATH TO MY PRIVATE KEY" # This can be empty if you do not want to set up encryption

Note that the organization_key should be a filepath that points to
the private key that was generated when the organization to which your
login belongs was first created (see Creating an organization).

Then, we connect to the vantage 6 server by initializing a Client
object, and authenticating

from vantage6.client import Client

Note: we assume here the config.py you just created is in the current directory.
If it is not, then you need to make sure it can be found on your PYTHONPATH
import config

Initialize the client object, and run the authentication
client = Client(config.server_url, config.server_port, config.server_api,
 verbose=True)
client.authenticate(config.username, config.password)

Optional: setup the encryption, if you have an organization_key
client.setup_encryption(config.organization_key)

Note

Above, we have added verbose=True as additional argument when creating
the Client(…) object. This will print much more information that can be
used to debug the issue.

Creating an organization

After you have authenticated, you can start generating resources. The following
also assumes that you have a login on the Vantage6 server that has the
permissions to create a new organization. Regular end-users typically do
not have these permissions (typically only administrators do); they may skip
this part.

The first (optional, but recommended) step is to create an RSA keypair.
A keypair, consisting of a private and a public key, can be used to
encrypt data transfers. Users from the organization you are about to
create will only be able to use encryption if such a keypair has been
set up and if they have access to the private key.

from vantage6.common import warning, error, info, debug, bytes_to_base64s
from vantage6.client.encryption import RSACryptor
from pathlib import Path

Generated a new private key
Note that the file below doesn't exist yet: you will create it
private_key_filepath = r'/path/to/private/key'
private_key = RSACryptor.create_new_rsa_key(Path(private_key_filepath))

Generate the public key based on the private one
public_key_bytes = RSACryptor.create_public_key_bytes(private_key)
public_key = bytes_to_base64s(public_key_bytes)

Now, we can create an organization

client.organization.create(
 name = 'The_Shire',
 address1 = '501 Buckland Road',
 address2 = 'Matamata',
 zipcode = '3472',
 country = 'New Zealand',
 domain = 'the_shire.org',
 public_key = public_key # use None if you haven't set up encryption
)

Users can now be created for this organization. Any users that are
created and who have access to the private key we generated above can
now use encryption by running

client.setup_encryption('/path/to/private/key')
or, if you don't use encryption
client.setup_encryption(None)

after they authenticate.

Creating a collaboration

Here, we assume that you have a Python session with an authenticated
Client object, as created in Authentication. We
also assume that you have a login on the Vantage6 server that has the
permissions to create a new collaboration (regular end-users typically
do not have these permissions, this is typically only for
administrators).

A collaboration is an association of multiple
organizations that want to run analyses together.
First, you will need to find the organization id’s of the organizations
you want to be part of the collaboration.

client.organization.list(fields=['id', 'name'])

Once you know the id’s of the organizations you want in the
collaboration (e.g. 1 and 2), you can create the collaboration:

collaboration_name = "fictional_collab"
organization_ids = [1,2] # the id's of the respective organizations
client.collaboration.create(name = collaboration_name,
 organizations = organization_ids,
 encrypted = True)

Note that a collaboration can require participating organizations to use
encryption, by passing the encrypted = True argument (as we did
above) when creating the collaboration. It is recommended to do so, but
requires that a keypair was created when Creating an organization
and that each user of that
organization has access to the private key so that they can run the
client.setup_encryption(...) command after
Authentication.

Registering a node

Here, we again assume that you have a Python session with an authenticated
Client object, as created in Authentication, and that you have a login
that has the permissions to create a new node (regular end-users typically do not
have these permissions, this is typically only for administrators).

A node is associated with both a collaboration and an organization (see
Components). You will need to find
the collaboration and organization id’s for the node you want to
register:

client.organization.list(fields=['id', 'name'])
client.collaboration.list(fields=['id', 'name'])

Then, we register a node with the desired organization and
collaboration. In this example, we create a node for the organization
with id 1 and collaboration with id 1.

A node is associated with both a collaboration and an organization
organization_id = 1
collaboration_id = 1
api_key = client.node.create(collaboration = collaboration_id, organization = organization_id)
print(f"Registered a node for collaboration with id {collaboration_id}, organization with id {organization_id}. The API key that was generated for this node was {api_key}")

Remember to save the api_key that is returned here, since you will
need it when you Configure the node.

Creating a task

Preliminaries

Here we assume that

	you have a Python session with an authenticated Client object, as
created in Authentication.

	you already have the algorithm you want to run available as a
container in a docker registry (see
here [https://vantage6.discourse.group/t/developing-a-new-algorithm/31]
for more details on developing your own algorithm)

	the nodes are configured to look at the right database

In this manual, we’ll use the averaging algorithm from
harbor2.vantage6.ai/demo/average, so the second requirement is met.
This container assumes a comma-separated (*.csv) file as input, and will
compute the average over one of the named columns. We’ll assume the
nodes in your collaboration have been configured to look at a
comma-separated database, i.e. their config contains something like

databases:
 default: /path/to/my/example.csv
 my_other_database: /path/to/my/example2.csv

so that the third requirement is also met. As an end-user running the
algorithm, you’ll need to align with the node owner about which database
name is used for the database you are interested in. For more details, see
how to Configure your node.

Determining which collaboration / organizations to create a task for

First, you’ll want to determine which collaboration to submit this task
to, and which organizations from this collaboration you want to be
involved in the analysis

>>> client.collaboration.list(fields=['id', 'name', 'organizations'])
[
 {'id': 1, 'name': 'example_collab1',
 'organizations': [
 {'id': 2, 'link': '/api/organization/2', 'methods': ['GET', 'PATCH']},
 {'id': 3, 'link': '/api/organization/3', 'methods': ['GET', 'PATCH']},
 {'id': 4, 'link': '/api/organization/4', 'methods': ['GET', 'PATCH']}
]}
]

In this example, we see that the collaboration called example_collab1
has three organizations associated with it, of which the organization
id’s are 2, 3 and 4. To figure out the names of these
organizations, we run:

>>> client.organization.list(fields=['id', 'name'])
[{'id': 1, 'name': 'root'}, {'id': 2, 'name': 'example_org1'},
 {'id': 3, 'name': 'example_org2'}, {'id': 4, 'name': 'example_org3'}]

i.e. this collaboration consists of the organizations example_org1
(with id 2), example_org2 (with id 3) and example_org3
(with id 4).

Creating a task that runs the master algorithm

Now, we have two options: create a task that will run the master
algorithm (which runs on one node and may spawns subtasks on other nodes),
or create a task that will (only) run the RPC methods (which are run
on each node). Typically, the RPC methods only run the node local analysis
(e.g. compute the averages per node), whereas the master algorithms
performs aggregation of those results as well (e.g. starts the node
local analyses and then also computes the overall average). First, let
us create a task that runs the master algorithm of the
harbor2.vantage6.ai/demo/average container

input_ = {'method': 'master',
 'kwargs': {'column_name': 'age'},
 'master': True}

average_task = client.task.create(collaboration=1,
 organizations=[2,3],
 name="an-awesome-task",
 image="harbor2.vantage6.ai/demo/average",
 description='',
 input=input_,
 data_format='json')

Note that the kwargs we specified in the input_ are specific to
this algorithm: this algorithm expects an argument column_name to be
defined, and will compute the average over the column with that name.
Furthermore, note that here we created a task for collaboration with id
1 (i.e. our example_collab1) and the organizations with id 2
and 3 (i.e. example_org1 and example_org2). I.e. the
algorithm need not necessarily be run on all the organizations
involved in the collaboration. Finally, note that
client.task.create() has an optional argument called database.
Suppose that we would have wanted to run this analysis on the database
called my_other_database instead of the default database, we
could have specified an additional database = 'my_other_database'
argument. Check help(client.task.create) for more information.

Creating a task that runs the RPC algorithm

You might be interested to know output of the RPC algorithm (in this
example: the averages for the ‘age’ column for each node). In that case,
you can run only the RPC algorithm, omitting the aggregation that the
master algorithm will normally do:

input_ = {'method': 'average_partial',
 'kwargs': {'column_name': 'age'},
 'master': False}

average_task = client.task.create(collaboration=1,
 organizations=[2,3],
 name="an-awesome-task",
 image="harbor2.vantage6.ai/demo/average",
 description='',
 input=input_,
 data_format='json')

Inspecting the results

Of course, it will take a little while to run your algorithm. You can
use the following code snippet to run a loop that checks the server
every 3 seconds to see if the task has been completed:

print("Waiting for results")
task_id = average_task['id']
task_info = client.task.get(task_id)
while not task_info.get("complete"):
 task_info = client.task.get(task_id, include_results=True)
 print("Waiting for results")
 time.sleep(3)

print("Results are ready!")

When the results are in, you can get the result_id from the task object:

result_id = task_info['id']

and then retrieve the results

result_info = client.result.list(task=result_id)

The number of results may be different depending on what you run, but
for the master algorithm in this example, we can retrieve it using:

>>> result_info['data'][0]['result']
{'average': 53.25}

while for the RPC algorithm, dispatched to two nodes, we can retrieve it
using

>>> result_info['data'][0]['result']
{'sum': 253, 'count': 4}
>>> result_info['data'][1]['result']
{'sum': 173, 'count': 4}

 1.3. R client

1.3. R client

Warning

We discourage the use of the R client. It is not actively maintained and
is not fully implemented. It can not (yet) be used to manage resources, such
as creating and deleting users and organizations.

1.3.1. Install

You can install the R client by running:

devtools::install_github('IKNL/vtg', subdir='src')

1.3.2. Use

The R client can only create tasks and retrieve their results.

Initialization of the R client can be done by:

setup.client <- function() {
 # Username/password should be provided by the administrator of
 # the server.
 username <- "username@example.com"
 password <- "password"

 host <- 'https://petronas.vantage6.ai:443'
 api_path <- ''

 # Create the client & authenticate
 client <- vtg::Client$new(host, api_path=api_path)
 client$authenticate(username, password)

 return(client)
}

Create a client
client <- setup.client()

Then, this client can be used for the different algorithms. Refer to the
README in the repository on how to call the algorithm. Usually this
includes installing some additional client-side packages for the
specific algorithm you are using.

Example

This example shows how to run the vantage6 implementation of a federated Cox
Proportional Hazard regression model. First you need to install the client side
of the algorithm by:

devtools::install_github('iknl/vtg.coxph', subdir="src")

This is the code to run the coxph:

print(client$getCollaborations())

Should output something like this:
id name
1 1 ZEPPELIN
2 2 PIPELINE

Select a collaboration
client$setCollaborationId(1)

Define explanatory variables, time column and censor column
expl_vars <- c("Age","Race2","Race3","Mar2","Mar3","Mar4","Mar5","Mar9",
 "Hist8520","hist8522","hist8480","hist8501","hist8201",
 "hist8211","grade","ts","nne","npn","er2","er4")
time_col <- "Time"
censor_col <- "Censor"

vtg.coxph contains the function `dcoxph`.
result <- vtg.coxph::dcoxph(client, expl_vars, time_col, censor_col)

 1.4. API

1.4. API

The API can be called via HTTP requests from a programming language of your
choice. You can explore how to use the server API on https://<serverdomain>/apidocs
(e.g. https://petronas.vantage6.ai/apidocs for our Petronas server).
This page will show you which API endpoints exist and how you can use them.

 2. Node admin guide

2. Node admin guide

This section shows you how you can set up your own vantage6 node. First, we
discuss the requirements for your node machine, then guide you through the
installation process. Finally, we explain how to configure and start your node.

	2.1. Requirements
	2.1.1. Python

	2.1.2. Docker

	2.2. Install

	2.3. Use
	2.3.1. Quick start

	2.3.2. Available commands
	Local test setup

	2.4. Configure
	2.4.1. How to create a configuration file

	2.4.2. Where is my configuration file?

	2.4.3. All configuration options

	2.4.4. Configuration file location

	2.4.5. Security

	2.4.6. Logging

 2.1. Requirements

2.1. Requirements

Note

This section is the same as the server requirements section - their
requirements are very similar.

The (minimal) requirements of the node and server are
similar. Note that these are recommendations: it may also work on other
hardware, operating systems, versions of Python etc. (but they are not tested
as much).

Hardware

	x86 CPU architecture + virtualization enabled

	1 GB memory

	50GB+ storage

	Stable and fast (1 Mbps+ internet connection)

	Public IP address

Software

	Operating system:
- Ubuntu 18.04+
- MacOS Big Sur+ (only for node)
- Windows 10+ (only for node)

	Python

	Docker

Note

For the server, Ubuntu is highly recommended. It is possible to run a
development server (using vserver start) on Windows or MacOS, but for
production purposes we recommend using Ubuntu.

Warning

The hardware requirements of the node also depend on the algorithms that
the node will run. For example, you need much less compute power for a
descriptive statistical algorithm than for a machine learning model.

2.1.1. Python

Installation of any of the vantage6 packages requires Python 3.10.
For installation instructions, see python.org [https://python.org],
anaconda.com [https://anaconda.com] or use the package manager
native to your OS and/or distribution.

Note

We recommend you install vantage6 in a new, clean Python (Conda)
environment.

Higher versions of Python (3.11+) will most likely also work, as might lower
versions (3.8 or 3.9). However, we develop and test vantage6 on version
3.10, so that is the safest choice.

Warning

Note that Python 3.10 is only used in vantage6 versions 3.8.0 and higher.
In lower versions, Python 3.7 is required.

2.1.2. Docker

Docker facilitates encapsulation of applications and their dependencies
in packages that can be easily distributed to diverse systems.
Algorithms are stored in Docker images which nodes can download and
execute. Besides the algorithms, both the node and server are also
running from a docker container themselves.

Please refer to this page [https://docs.docker.com/engine/install/]
on how to install Docker. To verify that Docker is installed and running
you can run the hello-world example from Docker.

docker run hello-world

Warning

Note that for Linux, some post-installation
steps [https://docs.docker.com/engine/install/linux-postinstall/] may
be required. Vantage6 needs to be able to run docker without sudo,
and these steps ensure just that.

Note

	Always make sure that Docker is running while using vantage6!

	We recommend to always use the latest version of Docker.

 2.2. Install

2.2. Install

To install the vantage6-node make sure you have met the
requirements. Then, we provide a command-line
interface (CLI) with which you can manage your node. The CLI is a Python
package that can be installed using pip. We always recommend to install the CLI
in a virtual environment [https://docs.python.org/3/tutorial/venv.html] or
a conda environment [https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html].

Run this command to install the CLI in your environment:

pip install vantage6

Or if you want to install a specific version:

pip install vantage6==x.y.z

You can verify that the CLI has been installed by running the command
vnode --help. If that prints a list of commands, the installation is
completed.

The next pages will explain to configure, start and stop the node. The
node software itself will be downloaded when you start the node for the first
time.

 2.3. Use

2.3. Use

This section explains which commands are available to manage your node.

2.3.1. Quick start

To create a new node, run the command below. A menu will be started that
allows you to set up a node configuration file. For more details, check
out the Configure section.

vnode new

To run a node, execute the command below. The --attach flag will
cause log output to be printed to the console.

vnode start --name <your_node> --attach

Finally, a node can be stopped again with:

vnode stop --name <your_node>

2.3.2. Available commands

Below is a list of all commands you can run for your node(s). To see all
available options per command use the --help flag,
i.e. vnode start --help .

	Command

	Description

	vnode new

	Create a new node configuration file

	vnode start

	Start a node

	vnode stop

	Stop a nodes

	vnode files

	List the files of a node (e.g. config and log
files)

	vnode attach

	Print the node logs to the console

	vnode list

	List all existing nodes

	vnode
create-private-key

	Create and upload a new public key for your
organization

	vnode
set-api-key

	Update the API key in your node configuration
file

Local test setup

Check the section on Local test setup of the server if
you want to run both the node and server on the same machine.

 2.4. Configure

2.4. Configure

The vantage6-node requires a configuration file to run. This is a
yaml file with a specific format.

The next sections describes how to configure the node. It first provides a few
quick answers on setting up your node, then shows an example of all
configuration file options, and finally explains where your vantage6
configuration files are stored.

2.4.1. How to create a configuration file

The easiest way to create an initial
configuration file is via: vnode new. This allows you to configure the
basic settings. For more advanced configuration options, which are listed below,
you can view the example configuration file.

2.4.2. Where is my configuration file?

To see where your configuration file is located, you can use the following
command

vnode files

Warning

This command will not work if you have put your configuration file in a
custom location. Also, you may need to specify the --system flag
if you put your configuration file in the
system folder.

2.4.3. All configuration options

The following configuration file is an example that intends to list all possible
configuration options.

You can download this file here: node_config.yaml

application:
 # API key used to authenticate at the server.
 api_key: ***

 # URL of the vantage6 server
 server_url: https://petronas.vantage6.ai

 # port the server listens to
 port: 443

 # API path prefix that the server uses. Usually '/api' or an empty string
 api_path: ''

 # subnet of the VPN server
 vpn_subnet: 10.76.0.0/16

 # add additional environment variables to the algorithm containers.
 # this could be usefull for passwords or other things that algorithms
 # need to know about the node it is running on
 # OPTIONAL
 algorithm_env:

 # in this example the environment variable 'player' has
 # the value 'Alice' inside the algorithm container
 player: Alice

 # specify custom Docker images to use for starting the different
 # components.
 # OPTIONAL
 images:
 node: harbor2.vantage6.ai/infrastructure/node:petronas
 alpine: harbor2.vantage6.ai/infrastructure/alpine
 vpn_client: harbor2.vantage6.ai/infrastructure/vpn_client
 network_config: harbor2.vantage6.ai/infrastructure/vpn_network

 # path or endpoint to the local data source. The client can request a
 # certain database by using its label. The type is used by the
 # auto_wrapper method used by algorithms. This way the algorithm wrapper
 # knows how to read the data from the source. The auto_wrapper currently
 # supports: 'csv', 'parquet', 'sql', 'sparql', 'excel', 'omop'. If your
 # algorithm does not use the wrapper and you have a different type of
 # data source you can specify 'other'.
 databases:
 - label: default
 uri: D:\data\datafile.csv
 type: csv

 # end-to-end encryption settings
 encryption:

 # whenever encryption is enabled or not. This should be the same
 # as the `encrypted` setting of the collaboration to which this
 # node belongs.
 enabled: false

 # location to the private key file
 private_key: /path/to/private_key.pem

 # Define who is allowed to run which algorithms on this node.
 policies:
 # Control which algorithm images are allowed to run on this node. This is
 # expected to be a valid regular expression.
 allowed_algorithms:
 - ^harbor2.vantage6.ai/[a-zA-Z]+/[a-zA-Z]+
 - myalgorithm.ai/some-algorithm
 # Define which users are allowed to run algorithms on your node by their ID
 allowed_users:
 - 2
 # Define which organizations are allowed to run images on your node by
 # their ID or name
 allowed_organizations:
 - 6
 - root

 # credentials used to login to private Docker registries
 docker_registries:
 - registry: docker-registry.org
 username: docker-registry-user
 password: docker-registry-password

 # Create SSH Tunnel to connect algorithms to external data sources. The
 # `hostname` and `tunnel:bind:port` can be used by the algorithm
 # container to connect to the external data source. This is the address
 # you need to use in the `databases` section of the configuration file!
 ssh-tunnels:

 # Hostname to be used within the internal network. I.e. this is the
 # hostname that the algorithm uses to connect to the data source. Make
 # sure this is unique and the same as what you specified in the
 # `databases` section of the configuration file.
 - hostname: my-data-source

 # SSH configuration of the remote machine
 ssh:

 # Hostname or ip of the remote machine, in case it is the docker
 # host you can use `host.docker.internal` for Windows and MacOS.
 # In the case of Linux you can use `172.17.0.1` (the ip of the
 # docker bridge on the host)
 host: host.docker.internal
 port: 22

 # fingerprint of the remote machine. This is used to verify the
 # authenticity of the remote machine.
 fingerprint: "ssh-rsa ..."

 # Username and private key to use for authentication on the remote
 # machine
 identity:
 username: username
 key: /path/to/private_key.pem

 # Once the SSH connection is established, a tunnel is created to
 # forward traffic from the local machine to the remote machine.
 tunnel:

 # The port and ip on the tunnel container. The ip is always
 # 0.0.0.0 as we want the algorithm container to be able to
 # connect.
 bind:
 ip: 0.0.0.0
 port: 8000

 # The port and ip on the remote machine. If the data source runs
 # on this machine, the ip most likely is 127.0.0.1.
 dest:
 ip: 127.0.0.1
 port: 8000

 # Settings for the logger
 logging:
 # Controls the logging output level. Could be one of the following
 # levels: CRITICAL, ERROR, WARNING, INFO, DEBUG, NOTSET
 level: DEBUG

 # Filename of the log-file, used by RotatingFileHandler
 file: my_node.log

 # whenever the output needs to be shown in the console
 use_console: true

 # The number of log files that are kept, used by RotatingFileHandler
 backup_count: 5

 # Size kb of a single log file, used by RotatingFileHandler
 max_size: 1024

 # format: input for logging.Formatter,
 format: "%(asctime)s - %(name)-14s - %(levelname)-8s - %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"

 # directory where local task files (input/output) are stored
 task_dir: C:\Users\<your-user>\AppData\Local\vantage6\node\mydir

 # Whether or not your node shares some configuration (e.g. which images are
 # allowed to run on your node) with the central server. This can be useful
 # for other organizations in your collaboration to understand why a task
 # is not completed. Obviously, no sensitive data is shared. Default true
 share_config: true

Note

We use DTAP for key environments [https://en.wikipedia.org/wiki/Development,_testing,_acceptance_and_production].
In short:

	dev: Development environment. It is ok to break things here

	test: Testing environment. Here, you can verify that everything
works as expected. This environment should resemble the target
environment where the final solution will be deployed as much as
possible.

	acc: Acceptance environment. If the tests were successful, you can
try this environment, where the final user will test his/her analysis
to verify if everything meets his/her expectations.

	prod: Production environment. The version of the proposed solution
where the final analyses are executed.

You can also specify the key application if you do not want to specify
one of the environments. This is also done in the example configuration
shown above.

2.4.4. Configuration file location

The directory where the configuration file is stored depends on your
operating system (OS). It is possible to store the configuration file at
system or at user level. By default, node configuration files
are stored at user level, which makes this
configuration available only for your user.

The default directories per OS are as follows:

	Operating
System

	System-folder

	User-folder

	Windows

	C:\ProgramData\vantage\node\

	C:\Users\<user>\AppData\Local\vantage\node\

	MacOS

	/Library/Application/Support/vantage6/node/

	/Users/<user>/Library/Application Support/vantage6/node/

	Linux

	/etc/vantage6/node/

	/home/<user>/.config/vantage6/node/

Note

The command vnode looks in these directories by default. However, it is
possible to use any directory and specify the location with the --config
flag. But note that doing that requires you to specify the --config
flag every time you execute a vnode command!

Similarly, you can put your node configuration file in the system folder
by using the --system flag. Note that in that case, you have to specify
the --system flag for all vnode commands.

2.4.5. Security

As a data owner it is important that you take the necessary steps to
protect your data. Vantage6 allows algorithms to run on your data and
share the results with other parties. It is important that you review
the algorithms before allowing them to run on your data.

Once you approved the algorithm, it is important that you can verify
that the approved algorithm is the algorithm that runs on your data.
There are two important steps to be taken to accomplish this:

	Set the (optional) allowed_images option in the
node-configuration file. You can specify a list of regex expressions here.
Some examples of what you could define:

	^harbor2.vantage6.ai/[a-zA-Z]+/[a-zA-Z]+: allow all images
from the vantage6 registry

	^harbor2.vantage6.ai/algorithms/glm: only allow the GLM image, but
all builds of this image

	^harbor2.vantage6.ai/algorithms/glm@sha256:82becede498899ec668628e7cb0ad87b6e1c371cb8
a1e597d83a47fac21d6af3: allows only this specific build from the GLM
image to run on your data

	Enable DOCKER_CONTENT_TRUST to verify the origin of the image.
For more details see the documentation from
Docker [https://docs.docker.com/engine/security/trust/].

Warning

By enabling DOCKER_CONTENT_TRUST you might not be able to use
certain algorithms. You can check this by verifying that the images you want
to be used are signed.

In case you are using our Docker repository you need to use
harbor2.vantage6.ai as harbor.vantage6.ai does not have a notary.

2.4.6. Logging

To configure the logger, look at the logging section
in the example configuration file in All configuration options.

Useful commands:

	vnode files: shows you where the log file is stored

	vnode attach: shows live logs of a running server in your current
console. This can also be achieved when starting the node with
vnode start --attach

 3. Server admin guide

3. Server admin guide

This section shows you how you can set up your own vantage6 server. First, we
discuss the requirements for your server machine, then guide you through the
installation process. Finally, we explain how to configure and start your
server.

	3.1. Requirements
	3.1.1. Python

	3.1.2. Docker

	3.2. Install
	3.2.1. Local (test) Installation

	3.2.2. Host your server

	3.3. Deploy
	3.3.1. NGINX

	3.3.2. Azure app service

	3.4. Install optional components
	3.4.1. User Interface

	3.4.2. EduVPN

	3.4.3. RabbitMQ

	3.4.4. Docker registry
	Docker Hub

	Harbor

	3.4.5. SMTP server

	3.5. Use
	3.5.1. Quick start

	3.5.2. Available commands

	3.5.3. Local test setup

	3.5.4. Batch import

	3.6. Configure
	3.6.1. How to create a configuration file

	3.6.2. Where is my configuration file?

	3.6.3. All configuration options

	3.6.4. Configuration file location

	3.6.5. Logging

	3.7. Shell
	3.7.1. Organizations

	3.7.2. Roles and Rules

	3.7.3. Users

	3.7.4. Collaborations

	3.7.5. Nodes

	3.7.6. Tasks and Results

 3.1. Requirements

3.1. Requirements

Note

This section is the same as the node requirements
section - their requirements are very similar.

The (minimal) requirements of the node and server are
similar. Note that these are recommendations: it may also work on other
hardware, operating systems, versions of Python etc. (but they are not tested
as much).

Hardware

	x86 CPU architecture + virtualization enabled

	1 GB memory

	50GB+ storage

	Stable and fast (1 Mbps+ internet connection)

	Public IP address

Software

	Operating system:
- Ubuntu 18.04+
- MacOS Big Sur+ (only for node)
- Windows 10+ (only for node)

	Python

	Docker

Note

For the server, Ubuntu is highly recommended. It is possible to run a
development server (using vserver start) on Windows or MacOS, but for
production purposes we recommend using Ubuntu.

Warning

The hardware requirements of the node also depend on the algorithms that
the node will run. For example, you need much less compute power for a
descriptive statistical algorithm than for a machine learning model.

3.1.1. Python

Installation of any of the vantage6 packages requires Python 3.10.
For installation instructions, see python.org [https://python.org],
anaconda.com [https://anaconda.com] or use the package manager
native to your OS and/or distribution.

Note

We recommend you install vantage6 in a new, clean Python (Conda)
environment.

Higher versions of Python (3.11+) will most likely also work, as might lower
versions (3.8 or 3.9). However, we develop and test vantage6 on version
3.10, so that is the safest choice.

Warning

Note that Python 3.10 is only used in vantage6 versions 3.8.0 and higher.
In lower versions, Python 3.7 is required.

3.1.2. Docker

Docker facilitates encapsulation of applications and their dependencies
in packages that can be easily distributed to diverse systems.
Algorithms are stored in Docker images which nodes can download and
execute. Besides the algorithms, both the node and server are also
running from a docker container themselves.

Please refer to this page [https://docs.docker.com/engine/install/]
on how to install Docker. To verify that Docker is installed and running
you can run the hello-world example from Docker.

docker run hello-world

Warning

Note that for Linux, some post-installation
steps [https://docs.docker.com/engine/install/linux-postinstall/] may
be required. Vantage6 needs to be able to run docker without sudo,
and these steps ensure just that.

Note

	Always make sure that Docker is running while using vantage6!

	We recommend to always use the latest version of Docker.

 3.2. Install

3.2. Install

3.2.1. Local (test) Installation

To install the vantage6 server, make sure you have met the
requirements. Then, we provide a command-line
interface (CLI) with which you can manage your server. The CLI is a Python
package that can be installed using pip. We always recommend to install the CLI
in a virtual environment [https://docs.python.org/3/tutorial/venv.html] or
a conda environment [https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html].

Run this command to install the CLI in your environment:

pip install vantage6

Or if you want to install a specific version:

pip install vantage6==x.y.z

You can verify that the CLI has been installed by running the command
vserver --help. If that prints a list of commands, the installation is
completed.

The server software itself will be downloaded when you start the server for the
first time.

3.2.2. Host your server

To host your server, we recommend to use the Docker image we
provide: harbor2.vantage6.ai/infrastructure/server. Running this
docker image will start the server. Check the
Deploy section for deployment examples.

Note

We recommend to use the latest version. Should you have reasons to
deploy an older VERSION, use the image
harbor2.vantage6.ai/infrastructure/server:<VERSION>.

If you deploy an older version, it is also recommended that the nodes match
that version. They can do that by specifying the --image flag in
their configuration file (see this section
on node configuration).

 3.3. Deploy

3.3. Deploy

The vantage6 server is a Flask application, that uses
python-socketio [https://python-socketio.readthedocs.io] for socketIO
connections. The server runs as a standalone process (listening on its own ip
address/port).

There are many deployment options. We simply provide a few examples.

	NGINX

	Azure app service

	…

Note

From version 3.2+ it is possible to horizontally scale the server (This
upgrade is also made available to version 2.3.4)

Documentation on how to deploy it will be shared here soon. Reach out to us
on Discord for now.

3.3.1. NGINX

A basic setup is shown below. Note that SSL is not configured in this example.

server {

 # Public port
 listen 80;
 server_name _;

 # vantage6-server. In the case you use a sub-path here, make sure
 # to foward also it to the proxy_pass
 location /subpath {
 include proxy_params;

 # internal ip and port
 proxy_pass http://127.0.0.1:5000/subpath;
 }

 # Allow the websocket traffic
 location /socket.io {
 include proxy_params;
 proxy_http_version 1.1;
 proxy_buffering off;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "Upgrade";
 proxy_pass http://127.0.0.1:5000/socket.io;
 }
}

Note

When you Configure the server, make
sure to include the /subpath that has been set in the NGINX
configuration into the api_path setting
(e.g. api_path: /subpath/api)

3.3.2. Azure app service

Note

We still have to document this. Reach out to us on Discord for now.

 3.4. Install optional components

3.4. Install optional components

There are several optional components that you can set up apart from the
vantage6 server itself.

	User interface
	An application that will allow your server’s users to interact more easily
with your vantage6 server.

	EduVPN
	If you want to enable algorithm containers that are running on different
nodes, to directly communicate with one another, you require a VPN
server.

	RabbitMQ
	If you have a server with a high workload whose performance you want to
improve, you may want to set up a RabbitMQ service which enables horizontal
scaling of the Vantage6 server.

	Docker registry
	A (private) Docker registry can be used to store algorithms but it is also
possible to use the (public) Docker hub [https://hub.docker.com/] to
upload your Docker images.

	SMTP server
	If you want to send emails to your users, e.g. to help them reset their
password, you need to set up an SMTP server.

Below, we explain how to install and deploy these components.

3.4.1. User Interface

The User Interface (UI) is a web application that will make it easier for your
users to interact with the server. It allows you to manage all your resources
(such as creating collaborations, editing users, or viewing tasks),
except for creating new tasks. We aim to incorporate this functionality
in the near future.

To deploy a UI, follow the instructions on the UI Github
page [https://github.com/vantage6/vantage6-UI]. We also provide a Docker
image that runs the UI.

The UI is not compatible with older versions (<3.3) of vantage6.

[image: UI screenshot]

Fig. 3.1 Screenshot of the vantage6 UI

3.4.2. EduVPN

EduVPN is an optional server component that enables the use of algorithms
that require node-to-node communication.

EduVPN [https://www.eduvpn.org/] provides an API for the OpenVPN
server, which is required for automated certificate retrieval by the
nodes. Like vantage6, it is an open source platform.

The following documentation shows you how to install EduVPN:

	Debian [https://github.com/eduvpn/documentation/blob/v2/DEPLOY_DEBIAN.md]

	Centos [https://github.com/eduvpn/documentation/blob/v2/DEPLOY_CENTOS.md]

	Fedora [https://github.com/eduvpn/documentation/blob/v2/DEPLOY_FEDORA.md]

After the installation is done, you need to configure the server to:

	Enable client-to-client communication. This can be achieved in the
configuration file by the clientToClient setting (see
here [https://github.com/eduvpn/documentation/blob/v2/PROFILE_CONFIG.md]).

	Do not block LAN communication (set blockLan to false). This
allows your docker subnetworks to continue to communicate, which is
required for vantage6 to function normally.

	Enable port
sharing [https://github.com/eduvpn/documentation/blob/v2/PORT_SHARING.md]
(Optional). This may be useful if the nodes are behind a strict
firewall. Port sharing allows nodes to connect to the VPN server only
using outgoing tcp/443. Be aware that TCP
meltdown [https://openvpn.net/faq/what-is-tcp-meltdown/] can occur
when using the TCP protocol for VPN.

	Create an application account.

Warning

EduVPN enables listening to multiple protocols (UDP/TCP) and ports at the
same time. Be aware that all nodes need to be connected using the same
protocol and port in order to communicate with each other.

Warning

The EduVPN server should usually be available to the public internet to
allow all nodes to find it. Therefore, it should be properly secured, for
example by closing all public ports (except http/https).

Additionally, you may want to explicitly allow only VPN traffic between
nodes, and not between a node and the VPN server. You can achieve that by
updating the firewall rules on your machine.

On Debian machines, these rules can be found in /etc/iptables/rules.v4 and /etc/iptables/rules.v6, on CentOS, Red Hat Enterprise Linux and Fedora they can be found in /etc/sysconfig/iptables and /etc/sysconfig/ip6tables. You will have to do the following:

Iptables rules to prevent node-to-VPN-server communication# In the firewall rules, below INPUT in the #SSH section, add this line
to drop all VPN traffic with the VPN server as final destination:
-I INPUT -i tun+ -j DROP

We only want to allow nodes to reach other nodes, and not other
network interfaces available in the VPN.
To achieve, replace the following rules:
-A FORWARD -i tun+ ! -o tun+ -j ACCEPT
-A FORWARD ! -i tun+ -o tun+ -j ACCEPT
with:
-A FORWARD -i tun+ -o tun+ -j ACCEPT
-A FORWARD -i tun+ -j DROP

Example configuration

The following configuration makes a server
listens to TCP/443 only. Make sure you set clientToClient to
true and blockLan to false. The range needs to be supplied to
the node configuration files. Also note that the server configured below
uses
port-sharing [https://github.com/eduvpn/documentation/blob/v2/PORT_SHARING.md].

EduVPN server configuration// /etc/vpn-server-api/config.php
<?php

return [
 // List of VPN profiles
 'vpnProfiles' => [
 'internet' => [
 // The number of this profile, every profile per instance has a
 // unique number
 // REQUIRED
 'profileNumber' => 1,

 // The name of the profile as shown in the user and admin portals
 // REQUIRED
 'displayName' => 'vantage6 :: vpn service',

 // The IPv4 range of the network that will be assigned to clients
 // REQUIRED
 'range' => '10.76.0.0/16',

 // The IPv6 range of the network that will be assigned to clients
 // REQUIRED
 'range6' => 'fd58:63db:3245:d20d::/64',

 // The hostname the VPN client(s) will connect to
 // REQUIRED
 'hostName' => 'eduvpn.vantage6.ai',

 // The address the OpenVPN processes will listen on
 // DEFAULT = '::'
 'listen' => '::',

 // The IP address to use for connecting to OpenVPN processes
 // DEFAULT = '127.0.0.1'
 'managementIp' => '127.0.0.1',

 // Whether or not to route all traffic from the client over the VPN
 // DEFAULT = false
 'defaultGateway' => true,

 // Block access to local LAN when VPN is active
 // DEFAULT = false
 'blockLan' => false,

 // IPv4 and IPv6 routes to push to the client, only used when
 // defaultGateway is false
 // DEFAULT = []
 'routes' => [],

 // IPv4 and IPv6 address of DNS server(s) to push to the client
 // DEFAULT = []
 // Quad9 (https://www.quad9.net)
 'dns' => ['9.9.9.9', '2620:fe::fe'],

 // Whether or not to allow client-to-client traffic
 // DEFAULT = false
 'clientToClient' => true,

 // Whether or not to enable OpenVPN logging
 // DEFAULT = false
 'enableLog' => false,

 // Whether or not to enable ACLs for controlling who can connect
 // DEFAULT = false
 'enableAcl' => false,

 // The list of permissions to allow access, requires enableAcl to
 // be true
 // DEFAULT = []
 'aclPermissionList' => [],

 // The protocols and ports the OpenVPN processes should use, MUST
 // be either 1, 2, 4, 8 or 16 proto/port combinations
 // DEFAULT = ['udp/1194', 'tcp/1194']
 'vpnProtoPorts' => [
 'tcp/1195',
],

 // List the protocols and ports exposed to the VPN clients. Useful
 // for OpenVPN port sharing. When empty (or missing), uses list
 // from vpnProtoPorts
 // DEFAULT = []
 'exposedVpnProtoPorts' => [
 'tcp/443',
],

 // Hide the profile from the user portal, i.e. do not allow the
 // user to choose it
 // DEFAULT = false
 'hideProfile' => false,

 // Protect to TLS control channel with PSK
 // DEFAULT = tls-crypt
 'tlsProtection' => 'tls-crypt',
 //'tlsProtection' => false,
],
],

 // API consumers & credentials
 'apiConsumers' => [
 'vpn-user-portal' => '***',
 'vpn-server-node' => '***',
],
];

The following configuration snippet can be used to add an API
user. The username and the client_secret have to be added to the
vantage6-server configuration file.

Add a VPN server user account...
'Api' => [
 'consumerList' => [
 'vantage6-user' => [
 'redirect_uri_list' => [
 'http://localhost',
],
 'display_name' => 'vantage6',
 'require_approval' => false,
 'client_secret' => '***'
]
]
...

3.4.3. RabbitMQ

RabbitMQ is an optional component that enables the server to handle more
requests at the same time. This is important if a server has a high workload.

There are several options to host your own RabbitMQ server. You can run
RabbitMQ in Docker [https://hub.docker.com/_/rabbitmq] or host
RabbitMQ on
Azure [https://www.golinuxcloud.com/install-rabbitmq-on-azure/]. When
you have set up your RabbitMQ service, you can connect the server to it
by adding the following to the server configuration:

rabbitmq_uri: amqp://<username>:<password@<hostname>:5672/<vhost>

Be sure to create the user and vhost that you specify exist! Otherwise,
you can add them via the RabbitMQ management
console [https://www.cloudamqp.com/blog/part3-rabbitmq-for-beginners_the-management-interface.html].

3.4.4. Docker registry

A Docker registry or repository provides storage and versioning for Docker
images. Installing a private Docker registry is useful if you want
don’t want to share your algorithms.

Docker Hub

Docker itself provides a registry as a turn-key solution on Docker Hub.
Instructions for setting it up can be found here:
https://hub.docker.com/_/registry.

Harbor

Harbor [https://goharbor.io] is another option for running a
registry. Harbor provides access control, a user interface and automated
scanning on vulnerabilities.

3.4.5. SMTP server

Some features of the server require an SMTP server to send emails. For example,
the server can send an email to a user when they lost their password. There
are many ways to set up an SMTP server, and we will not go into detail here.
Just remember that you need to configure the server to use your SMTP server
(see All configuration options).

 3.5. Use

3.5. Use

This section explains which commands are available to manage your server. It
also explains how to set up a test server locally and how to manage resources
via an IPython shell.

3.5.1. Quick start

To create a new server, run the command below. A menu will be started
that allows you to set up a server configuration file.

vserver new

For more details, check out the Configure section.

To run a server, execute the command below. The --attach flag will
copy log output to the console.

vserver start --name <your_server> --attach

Warning

When the server is run for the first time, the following user is created:

	username: root

	password: root

It is recommended to change this password immediately.

Finally, a server can be stopped again with:

vserver stop --name <your_server>

3.5.2. Available commands

The following commands are available in your environment. To see all the
options that are available per command use the --help flag,
e.g. vserver start --help.

	Command

	Description

	vserver
new

	Create a new server configuration file

	vserver
start

	Start a server

	vserver
stop

	Stop a server

	vserver
files

	List the files that a server is using

	vserver
attach

	Show a server’s logs in the current terminal

	vserver
list

	List the available server instances

	vserver
shell

	Run a server instance python shell

	vserver
import

	Import server entities as a batch

	vserver
version

	Shows the versions of all the components of the
running server

3.5.3. Local test setup

If the nodes and the server run at the same machine, you have to make
sure that the node can reach the server.

Windows and MacOS

Setting the server IP to 0.0.0.0 makes the server reachable
at your localhost (this is also the case when the dockerized version
is used). In order for the node to reach this server, set the
server_url setting to host.docker.internal.

Warning

On the M1 mac the local server might not be reachable from
your nodes as host.docker.internal does not seem to refer to the
host machine. Reach out to us on Discourse for a solution if you need
this!

Linux

You should bind the server to 0.0.0.0. In the node
configuration files, you can then use http://172.17.0.1, assuming you use
the default docker network settings.

3.5.4. Batch import

You can easily create a set of test users, organizations and collaborations by
using a batch import. To do this, use the
vserver import /path/to/file.yaml command. An example yaml file is
provided below.

You can download this file here.

Example batch importapplication: {}
 # you may also add your configuration here and leave environments empty

environments:
 # name of the environment (should be 'test', 'prod', 'acc' or 'dev')
 test:

 # Human readable description of the server instance. This is to help
 # your peers to identify the server
 description: Test

 # Should be prod, acc, test or dev. In case the type is set to test
 # the JWT-tokens expiration is set to 1 day (default is 6 hours). The
 # other types can be used in future releases of vantage6
 type: test

 # IP adress to which the server binds. In case you specify 0.0.0.0
 # the server listens on all interfaces
 ip: 0.0.0.0

 # Port to which the server binds
 port: 5000

 # API path prefix. (i.e. https://yourdomain.org/api_path/<endpoint>). In the
 # case you use a referse proxy and use a subpath, make sure to include it
 # here also.
 api_path: /api

 # The URI to the server database. This should be a valid SQLAlchemy URI,
 # e.g. for an Sqlite database: sqlite:///database-name.sqlite,
 # or Postgres: postgresql://username:password@172.17.0.1/database).
 uri: sqlite:///test.sqlite

 # This should be set to false in production as this allows to completely
 # wipe the database in a single command. Useful to set to true when
 # testing/developing.
 allow_drop_all: True

 # The secret key used to generate JWT authorization tokens. This should
 # be kept secret as others are able to generate access tokens if they
 # know this secret. This parameter is optional. In case it is not
 # provided in the configuration it is generated each time the server
 # starts. Thereby invalidating all previous distributed keys.
 # OPTIONAL
 jwt_secret_key: super-secret-key! # recommended but optional

 # Settings for the logger
 logging:

 # Controls the logging output level. Could be one of the following
 # levels: CRITICAL, ERROR, WARNING, INFO, DEBUG, NOTSET
 level: DEBUG

 # Filename of the log-file, used by RotatingFileHandler
 file: test.log

 # Whether the output is shown in the console or not
 use_console: True

 # The number of log files that are kept, used by RotatingFileHandler
 backup_count: 5

 # Size in kB of a single log file, used by RotatingFileHandler
 max_size: 1024

 # format: input for logging.Formatter,
 format: "%(asctime)s - %(name)-14s - %(levelname)-8s - %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"

 # Configure a smtp mail server for the server to use for administrative
 # purposes. e.g. allowing users to reset their password.
 # OPTIONAL
 smtp:
 port: 587
 server: smtp.yourmailserver.com
 username: your-username
 password: super-secret-password

 # Set an email address you want to direct your users to for support
 # (defaults to the address you set above in the SMTP server or otherwise
 # to support@vantage6.ai)
 support_email: your-support@email.com

 # set how long reset token provided via email are valid (default 1 hour)
 email_token_validity_minutes: 60

 # set how long tokens and refresh tokens are valid (default 6 and 48
 # hours, respectively)
 token_expires_hours: 6
 refresh_token_expires_hours: 48

 # If algorithm containers need direct communication between each other
 # the server also requires a VPN server. (!) This must be a EduVPN
 # instance as vantage6 makes use of their API (!)
 # OPTIONAL
 vpn_server:
 # the URL of your VPN server
 url: https://your-vpn-server.ext

 # OATH2 settings, make sure these are the same as in the
 # configuration file of your EduVPN instance
 redirect_url: http://localhost
 client_id: your_VPN_client_user_name
 client_secret: your_VPN_client_user_password

 # Username and password to acccess the EduVPN portal
 portal_username: your_eduvpn_portal_user_name
 portal_userpass: your_eduvpn_portal_user_password

 prod: {}
 acc: {}
 dev: {}

Warning

All users that are imported using vserver import receive the superuser
role. We are looking into ways to also be able to import roles. For more
background info refer to this
issue [https://github.com/vantage6/vantage6/issues/71].

 3.6. Configure

3.6. Configure

The vantage6-server requires a configuration file to run. This is a
yaml file with a specific format.

The next sections describes how to configure the server. It first provides a few
quick answers on setting up your server, then shows an example of all
configuration file options, and finally explains where your vantage6
configuration files are stored.

3.6.1. How to create a configuration file

The easiest way to create an initial
configuration file is via: vserver new. This allows you to configure the
basic settings. For more advanced configuration options, which are listed below,
you can view the example configuration file.

3.6.2. Where is my configuration file?

To see where your configuration file is located, you can use the following
command

vserver files

Warning

This command will usually only work for local test deployments of the
vantage6 server. If you have deployed the server on a remote server,
this command will probably not work.

Also, note that on local deployments you may need to specify the
--user flag if you put your configuration file in the
user folder.

You can create and edit this file
manually. To create an initial configuration file you can also use the
configuration wizard: vserver new.

3.6.3. All configuration options

The following configuration file is an example that intends to list all possible
configuration options.

You can download this file here: server_config.yaml

application: {}
 # you may also add your configuration here and leave environments empty

environments:
 # name of the environment (should be 'test', 'prod', 'acc' or 'dev')
 test:

 # Human readable description of the server instance. This is to help
 # your peers to identify the server
 description: Test

 # Should be prod, acc, test or dev. In case the type is set to test
 # the JWT-tokens expiration is set to 1 day (default is 6 hours). The
 # other types can be used in future releases of vantage6
 type: test

 # IP adress to which the server binds. In case you specify 0.0.0.0
 # the server listens on all interfaces
 ip: 0.0.0.0

 # Port to which the server binds
 port: 5000

 # API path prefix. (i.e. https://yourdomain.org/api_path/<endpoint>). In the
 # case you use a referse proxy and use a subpath, make sure to include it
 # here also.
 api_path: /api

 # The URI to the server database. This should be a valid SQLAlchemy URI,
 # e.g. for an Sqlite database: sqlite:///database-name.sqlite,
 # or Postgres: postgresql://username:password@172.17.0.1/database).
 uri: sqlite:///test.sqlite

 # This should be set to false in production as this allows to completely
 # wipe the database in a single command. Useful to set to true when
 # testing/developing.
 allow_drop_all: True

 # The secret key used to generate JWT authorization tokens. This should
 # be kept secret as others are able to generate access tokens if they
 # know this secret. This parameter is optional. In case it is not
 # provided in the configuration it is generated each time the server
 # starts. Thereby invalidating all previous distributed keys.
 # OPTIONAL
 jwt_secret_key: super-secret-key! # recommended but optional

 # Settings for the logger
 logging:

 # Controls the logging output level. Could be one of the following
 # levels: CRITICAL, ERROR, WARNING, INFO, DEBUG, NOTSET
 level: DEBUG

 # Filename of the log-file, used by RotatingFileHandler
 file: test.log

 # Whether the output is shown in the console or not
 use_console: True

 # The number of log files that are kept, used by RotatingFileHandler
 backup_count: 5

 # Size in kB of a single log file, used by RotatingFileHandler
 max_size: 1024

 # format: input for logging.Formatter,
 format: "%(asctime)s - %(name)-14s - %(levelname)-8s - %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"

 # Configure a smtp mail server for the server to use for administrative
 # purposes. e.g. allowing users to reset their password.
 # OPTIONAL
 smtp:
 port: 587
 server: smtp.yourmailserver.com
 username: your-username
 password: super-secret-password

 # Set an email address you want to direct your users to for support
 # (defaults to the address you set above in the SMTP server or otherwise
 # to support@vantage6.ai)
 support_email: your-support@email.com

 # set how long reset token provided via email are valid (default 1 hour)
 email_token_validity_minutes: 60

 # set how long tokens and refresh tokens are valid (default 6 and 48
 # hours, respectively)
 token_expires_hours: 6
 refresh_token_expires_hours: 48

 # If algorithm containers need direct communication between each other
 # the server also requires a VPN server. (!) This must be a EduVPN
 # instance as vantage6 makes use of their API (!)
 # OPTIONAL
 vpn_server:
 # the URL of your VPN server
 url: https://your-vpn-server.ext

 # OATH2 settings, make sure these are the same as in the
 # configuration file of your EduVPN instance
 redirect_url: http://localhost
 client_id: your_VPN_client_user_name
 client_secret: your_VPN_client_user_password

 # Username and password to acccess the EduVPN portal
 portal_username: your_eduvpn_portal_user_name
 portal_userpass: your_eduvpn_portal_user_password

 prod: {}
 acc: {}
 dev: {}

Note

We use DTAP for key environments [https://en.wikipedia.org/wiki/Development,_testing,_acceptance_and_production].
In short:

	dev Development environment. It is ok to break things here

	test Testing environment. Here, you can verify that everything
works as expected. This environment should resemble the target
environment where the final solution will be deployed as much as
possible.

	acc Acceptance environment. If the tests were successful, you can
try this environment, where the final user will test his/her analysis
to verify if everything meets his/her expectations.

	prod Production environment. The version of the proposed solution
where the final analyses are executed.

You can also specify the key application if you do not want to specify
one of the environments.

3.6.4. Configuration file location

The directory where to store the configuration file depends on you
operating system (OS). It is possible to store the configuration file at
system or at user level. At the user level, configuration files are only
available for your user. By default, server configuration files are stored at
system level.

The default directories per OS are as follows:

	OS

	System

	User

	Windows

	C:\ProgramData\vantage\server

	C:\Users\<user>\AppData\Local\vantage\server

	MacOS

	/Library/Application/Support/vantage6/server

	/Users/<user>/Library/Application Support/vantage6/server

	Linux

	/etc/xdg/vantage6/server/

	/home/<user>/.config/vantage6/server/

Warning

The command vserver looks in certain directories by default. It is
possible to use any directory and specify the location with the --config
flag. However, note that using a different directory requires you to specify
the --config flag every time!

Similarly, you can put your server configuration file in the user folder
by using the --user flag. Note that in that case, you have to specify
the --user flag for all vserver commands.

3.6.5. Logging

Logging is enabled by default. To configure the logger, look at the logging
section in the example configuration in All configuration options.

Useful commands:

	vserver files: shows you where the log file is stored

	vserver attach: show live logs of a running server in your
current console. This can also be achieved when starting the server
with vserver start --attach

 3.7. Shell

3.7. Shell

Warning

Using the server shell is not recommended. The shell is outdated and
superseded by other tools. The shell offers a server admin the ability to
manage the server entities, but does not offer any validation of the input.
Therefore, it is easy to break the server by using the shell.

Instead, we recommend using the user interface, the
Python client or the API.

The shell allows a server admin to manage all server entities. To start
the shell, use vserver shell [options].

In the next sections the different database models that are available
are explained. You can retrieve any record and edit any property of it.
Every db. object has a help() method which prints some info on
what data is stored in it (e.g. db.Organization.help()).

Note

Don’t forget to call .save() once you are done editing an object.

3.7.1. Organizations

Note

Organizations have a public key that is used for end-to-end encryption.
This key is automatically created and/or uploaded by the node the first
time it runs.

To store an organization you can use the db.Organization model:

create new organiztion
organization = db.Organization(
 name="IKNL",
 domain="iknl.nl",
 address1="Zernikestraat 29",
 address2="Eindhoven",
 zipcode="5612HZ",
 country="Netherlands"
)

store organization in the database
organization.save()

Retrieving organizations from the database:

get all organizations in the database
organizations = db.Organization.get()

get organization by its unique id
organization = db.Organization.get(1)

get organization by its name
organization = db.Organization.get_by_name("IKNL")

A lot of entities (e.g. users) at the server are connected to an
organization. E.g. you can see which (computation) tasks are issued by
the organization or see which collaborations it is participating in.

retrieve organization from which we want to know more
organization = db.Organization.get_by_name("IKNL")

get all collaborations in which the organization participates
collaborations = organization.collaborations

get all users from the organization
users = organization.users

get all created tasks (from all users)
tasks = organization.created_tasks

get the results of all these tasks
results = organization.results

get all nodes of this organization (for each collaboration
an organization participates in, it needs a node)
nodes = organization.nodes

3.7.2. Roles and Rules

A user can have multiple roles and rules assigned to them. These are
used to determine if the user has permission to view, edit, create or
delete certain resources using the API. A role is a collection of rules.

display all available rules
db.Rule.get()

display rule 1
db.Rule.get(1)

display all available roles
db.Role.get()

display role 3
db.Role.get(3)

show all rules that belong to role 3
db.Role.get(3).rules

retrieve a certain rule from the DB
rule = db.Rule.get_by_("node", Scope, Operation)

create a new role
role = db.Role(name="role-name", rules=[rule])
role.save()

or assign the rule directly to the user
user = db.User.get_by_username("some-existing-username")
user.rules.append(rule)
user.save()

3.7.3. Users

Users belong to an organization. So if you have not created any
Organizations yet, then you should do that first. To create a user
you can use the db.User model:

first obtain the organization to which the new user belongs
org = db.Organization.get_by_name("IKNL")

obtain role 3 to assign to the new user
role_3 = db.Role.get(3)

create the new users, see section Roles and Rules on how to
deal with permissions
new_user = db.User(
 username="root",
 password="super-secret",
 firstname="John",
 lastname="Doe",
 roles=[role_3],
 rules=[],
 organization=org
)

store the user in the database
new_user.save()

You can retrieve users in the following ways:

get all users
db.User.get()

get user 1
db.User.get(1)

get user by username
db.User.get_by_username("root")

get all users from the organization IKNL
db.Organization.get_by_name("IKNL").users

To modify a user, simply adjust the properties and save the object.

user = db.User.get_by_username("some-existing-username")

update the firstname
user.firstname = "Brandnew"

update the password; it is automatically hashed.
user.password = "something-new"

store the updated user in the database
user.save()

3.7.4. Collaborations

A collaboration consists of one or more organizations. To create a
collaboration you need at least one but preferably multiple
Organizations in your database. To create a
collaboration you can use the db.Collaboration model:

create a second organization to collaborate with
other_organization = db.Organization(
 name="IKNL",
 domain="iknl.nl",
 address1="Zernikestraat 29",
 address2="Eindhoven",
 zipcode="5612HZ",
 country="Netherlands"
)
other_organization.save()

get organization we have created earlier
iknl = db.Organization.get_by_name("IKNL")

create the collaboration
collaboration = db.Collaboration(
 name="collaboration-name",
 encrypted=False,
 organizations=[iknl, other_organization]
)

store the collaboration in the database
collaboration.save()

Tasks, nodes and organizations are directly related to collaborations.
We can obtain these by:

obtain a collaboration which we like to inspect
collaboration = db.Collaboration.get(1)

get all nodes
collaboration.nodes

get all tasks issued for this collaboration
collaboration.tasks

get all organizations
collaboration.organizations

Warning

Setting the encryption to False at the server does not mean that the nodes
will send encrypted results. This is only the case if the nodes also agree
on this setting. If they don’t, you will receive an error message.

3.7.5. Nodes

Before nodes can login, they need to exist in the server’s database. A
new node can be created as follows:

we'll use a uuid as the API-key, but you can use anything as
API key
from uuid import uuid1

nodes always belong to an organization *and* a collaboration,
this combination needs to be unique!
iknl = db.Organization.get_by_name("IKNL")
collab = iknl.collaborations[0]

generate and save
api_key = str(uuid1())
print(api_key)

node = db.Node(
 name = f"IKNL Node - Collaboration {collab.name}",
 organization = iknl,
 collaboration = collab,
 api_key = api_key
)

save the new node to the database
node.save()

Note

API keys are hashed before stored in the database. Therefore you need to
save the API key immediately. If you lose it, you can reset the API key
later via the shell, API, client or UI.

3.7.6. Tasks and Results

Warning

Tasks(/results) created from the shell are not picked up by nodes that are
already running. The signal to notify them of a new task cannot be emitted
this way. We therefore recommend sending tasks via the Python client.

A task is intended for one or more organizations. For each organization
the task is intended for, a corresponding (initially empty) result
should be created. Each task can have multiple results, for example a
result from each organization.

obtain organization from which this task is posted
iknl = db.Organization.get_by_name("IKNL")

obtain collaboration for which we want to create a task
collaboration = db.Collaboration.get(1)

obtain the next run_id. Tasks sharing the same run_id
can share the temporary volumes at the nodes. Usually this
run_id is assigned through the API (as the user is not allowed
to do so). All tasks from a master-container share the
same run_id
run_id = db.Task.next_run_id()

task = db.Task(
 name="some-name",
 description="some human readable description",
 image="docker-registry.org/image-name",
 collaboration=collaboration,
 run_id=run_id,
 database="default",
 initiator=iknl,
)
task.save()

input the algorithm container (docker-registry.org/image-name)
expects
input_ = {
}

import datetime

now create a result model for each organization within the
collaboration. This could also be a subset
for org in collaboration.organizations:
 res = db.Result(
 input=input_,
 organization=org,
 task=task,
 assigned_at=datetime.datetime.now()
)
 res.save()

Tasks can have a child/parent relationship. Note that the run_id is
for parent and child tasks the same.

get a task to which we want to create some
child tasks
parent_task = db.Task.get(1)

child_task = db.Task(
 name="some-name",
 description="some human readable description",
 image="docker-registry.org/image-name",
 collaboration=collaboration,
 run_id=parent_task.run_id,
 database="default",
 initiator=iknl,
 parent=parent_task
)
child_task.save()

Note

Tasks that share a run_id have access to the same temporary folder at
the node. This allows for multi-stage algorithms.

Obtaining results:

obtain all Results
db.Result.get()

obtain only completed results
[result for result in db.Result.get() if result.complete]

obtain result by its unique id
db.Result.get(1)

 4. Algorithm Development

4. Algorithm Development

This section helps you to develop MPC and FL algorithms that are compatible
with vantage6. You are not going to find a list of algorithms here or help
on how to use them. In the Components the basic concepts and interface
between node and algorithm is explained. Then in the Classic Tutorial a
FL algorithm is build from scratch.

This section is to be extended with more examples in the future.

Contents:

	4.1. Concepts
	4.1.1. Input & output
	Environment variables

	File mounts

	4.1.2. Wrappers
	Federated function

	Central function

	Different wrappers

	Data serialization

	4.1.3. Mock client

	4.1.4. Child containers

	4.1.5. Networking
	VPN connection

	4.1.6. Cross language

	4.1.7. Package & distribute
	Dockerfile

	Build & upload

	Signed images

	4.2. Classic Tutorial
	4.2.1. Mathematical decomposition

	4.2.2. Federated implementation
	Federated part

	Central part

	Local testing

	4.2.3. Vantage6 integration
	📂Algorithm Structure

	Local testing

	Building and Distributing

	4.2.4. Cross-language serialization

 4.1. Concepts

4.1. Concepts

Algorithms are executed at the (vantage6-)node. The node receives a computation
task from the vantage6-server. The node will then retrieve the algorithm,
execute it and return the results to the server.

Algorithms are shared using Docker images [https://docs.docker.com/get-started/#what-is-a-container-image] which are stored in a Docker image registry [https://docs.vantage6.ai/installation/server/docker-registry] which is
accessible to the nodes. In the following sections we explain the fundamentals
of algorithm containers.

	Input & output
Interface between the node and algorithm container

	Wrappers
Library to simplify and standardized the node-algorithm input and output

	Child containers
Creating subtasks from an algorithm container

	Networking
Communicate with other algorithm containers and the vantage6-server

	Cross language
Cross language data serialization

	Package & distribute
Packaging and shipping algorithms

4.1.1. Input & output

The algorithm runs in an isolated environment within the data station (node).
As it is important to limit the connectivity and accessability for obvious
security reasons. In order for the algorithm to do its work, it is provided
with several resources.

Note

This section describes the current process. Keep in mind that this is
subjected to be changed. For more information, please see this Github [https://github.com/vantage6/vantage6/issues/154]

Environment variables

The algorithms have access to several environment variables, see Environment variables. These can be used
to locate certain files or to add local configuration settings into the
container.

Table 4.1 Environment variables

	Variable

	Description

	INPUT_FILE

	path to the input file. The input file contains the user defined input
for the algorithms.

	TOKEN_FILE

	Path to the token file. The token file contains a JWT token which can
be used to access the vantage6-server. This way the algorithm container
is able to post new tasks and retrieve results.

	TEMPORARY_FOLDER

	Path to the temporary folder. This folder can be used to store
intermediate results. These intermediate results are shared between all
containers that have the same run_id. Algorithm containers which are
created from an algorithm container themselves share the same run_id.

	HOST

	Contains the URL to the vantage6-server.

	PORT

	Contains the port to which the vantage6-server listens. Is used in
combination with HOST and API_PATH.

	API_PATH

	Contains the api base path from the vantage6-server.

	[*]_DATABASE_URI

	Contains the URI of the local database. The * is replaced by the
key specified in the node configuration file.

Note

Additional environment variables can be specified in the node configuration
file using the algorithm_env key. These additional variables are forwarded
to all algorithm containers.

File mounts

The algorithm container has access to several file mounts.

	Input
	The input file contains the user defined input. The user specifies this when a task is created.

	Output
	The algorithm should write its output to this file. When the docker
container exits the contents of this file will be send back to the
vantage6-server.

	Token
	The token file contains a JWT token which can be used by the algorithm
to communicate with the central server. The token can only be used to
create a new task with the same image, and is only valid while the task
has not yet been completed.

	Temporary directory
	The temporary directory can be used by an algorithm container to share
files with other algorithm containers that:

	run on the same node

	have the same run_id

Algorithm containers that origin from another container (a.k.a master
container or parent container) share the same run_id. i.o. if a user
creates a task a new run_id is assigned.

The paths to these files and directories are stored in the environment
variables, which we will explain now.

4.1.2. Wrappers

The algorithm wrapper simplifies and standardizes the interaction
between algorithm and node. The client
libraries and the
algorithm wrapper are tied together and use the same standards. The
algorithm wrapper:

	reads the environment variables and file mounts and supplies these to
your algorithm.

	provides an
entrypoint [https://docs.docker.com/engine/reference/builder/#entrypoint] for
the docker container

	allows to write a single algorithm for multiple types of data sources

The wrapper is language specific and currently we support Python and R.
Extending this concept to other languages is not so complex.

[image: ../_images/algorithm_wrapper.png]

Fig. 4.1 The algorithm wrapper handles algorithm input and output.

Federated function

The signature of your function has to contain data as the first
argument. The method name should have a RPC_ prefix. Everything that
is returned by the function will be written to the output file.

Python:

def RPC_my_algorithm(data, *args, **kwargs):
 pass

R:

RPC_my_algorithm <- function(data, ...) {
}

Central function

It is quite common to have a central part of your federated analysis
which orchestrates the algorithm and combines the partial results. A
common pattern for a central function would be:

	Request partial models from all participants

	Obtain the partial models

	Combine the partial models to a global model

	(optional) Repeat step 1-3 until the model converges

It is possible to run the central part of the analysis on your own
machine, but it is also possible to let vantage6 handle the central
part. There are several advantages to letting vantage6 handle this:

	You don’t have to keep your machine running during the analysis

	You don’t need to use the same programming language as the algorithm
in case a language specific serialization is used in the algorithm

Note

Central functions also run at a node and not at the server.

In contrast to the federated functions, central functions are not
prefixed. The first argument needs to be client and the second
argument needs to be data. The data argument contains the local
data and the client argument provides an interface to the
vantage6-server.

Warning

The argument data is not present in the R wrapper. This is a consistency
issue which will be solved in a future release.

Example central function in Pythondef main(client, data, *args, **kwargs):
 # Run a federated function. Note that we omnit the
 # RPC_ prefix. This prefix is added automatically
 # by the infrastructure
 task = client.create_new_task(
 {
 "method": "my_algorithm",
 "args": [],
 "kwargs": {}
 },
 organization_ids=[...]
)

 # wait for the federated part to complete
 # and return
 results = wait_and_collect(task)

 return results

Example central function in Rmain <- function(client, ...) {
 # Run a federated function. Note that we omnit the
 # RPC_ prefix. This prefix is added automatically
 # by the infrastructure
 result <- client$call("my_algorithm", ...)

 # Optionally do something with the results

 # return the results
 return(result)
}

 4.2. Classic Tutorial

4.2. Classic Tutorial

In this section the basic steps for creating an algorithm for horizontally
partitioned data are explained.

Note

The final code of this tutorial is published on
Github [https://github.com/iknl/v6-average-py]. The algorithm is also
published in our Docker registry: harbor2.vantage6.ai/demo/average

It is assumed that it is mathematically possible to create a federated
version of the algorithm you want to use. In the following sections we
create a federated algorithm to compute the average of a distributed
dataset. An overview of the steps that we are going through:

	Mathematically decompose the model

	Federated implementation and local testing

	Vantage6 algorithm wrapper

	Dockerize and push to a registry

This tutorial shows you how to create a federated mean algorithm.

4.2.1. Mathematical decomposition

The mean of \(Q = [q_1, q_2 ... q_n]\) is computed as:

\[Q_{mean} = \frac{1}{n} \sum \limits_{i=1}^{n} {q_i} = \frac{q_1 + q_2 + ... + q_n}{n}\]

When dataset \(Q\) is horizontally partitioned in dataset \(A\) and
\(B\):

\[\begin{align}\begin{aligned}A = [a_1, a_2 ... a_j] = [q_1, q_2 ... q_j]\\B = [b_{1}, b_{2} ... b_k] = [q_{j+1}, q_{j+2}...q_{n}]\end{aligned}\end{align} \]

We would like to compute \(Q_{mean}\) from dataset A and B. This could be
computed as:

\[Q_{mean} = \frac{(a_1+a_2+...+a_j) + (b_1+b_2+...+b_k)}{j+k} = \frac{\sum A
 + \sum B }{j+k}\]

Both the number of samples in each dataset and the total sum of each
dataset is needed. Then we can compute the global average of dataset \(A\)
and \(B\).

Note

We cannot simply compute the average on each node and combine them, as this
would be mathematically incorrect. This would only work if dataset A
and B contain the exact same number of samples.

4.2.2. Federated implementation

Warning

In this example we use python, however you are free to use any language.
The only requirements are: 1) It has to be able to create HTTP-requests,
and 2) has to be able to read and write to files.

However, if you use a different language you are not able to use our
wrapper. Reach out to us on Discord [https://discord.gg/yAyFf6Y] to
discuss how this works.

A federated algorithm consist of two parts:

	A federated part of the algorithm which is responsible for creating
the partial results. In our case this would be computing (1) the sum
of the observations, and (2) the number of observations.

	A central part of the algorithm which is responsible for combining
the partial results from the nodes. In the case of the federated mean
that would be dividing the total sum of the observations by the total
number of observations.

Note

The central part of the algorithm can either be run on the machine of the
researcher himself or in a master container which runs on a node. The latter
is the preferred method.

In case the researcher runs this part, he/she needs to have a proper
setup to do so (i.e. Python 3.5+ and the necessary dependencies). This
can be useful when developing new algorithms.

Federated part

The node that runs this part contains a CSV-file with one column
(specified by the argument column_name) which we want to use to
compute the global mean. We assume that this column has no NaN values.

import pandas

def federated_part(path, column_name="numbers"):
 """Compute the sum and number of observations of a column"""

 # extract the column numbers from the CSV
 numbers = pandas.read_csv(path)[column_name]

 # compute the sum, and count number of rows
 local_sum = numbers.sum()
 local_count = len(numbers)

 # return the values as a dict
 return {
 "sum": local_sum,
 "count": local_count
 }

Central part

The central algorithm receives the sums and counts from all sites and
combines these to a global mean. This could be from one or more sites.

def central_part(node_outputs):
 """Combine the partial results to a global average"""
 global_sum = 0
 global_count = 0
 for output in node_outputs:
 global_sum += output["sum"]
 global_count += output["count"]

 return {"average": global_sum / global_count}

Local testing

To test, simply create two datasets A and B, both having a
numerical column numbers. Then run the following:

outputs = [
 federated_part("path/to/dataset/A"),
 federated_part("path/to/dataset/B")
]
Q_average = central_part(outputs)["average"]
print(f"global average = {Q_average}.")

4.2.3. Vantage6 integration

Note

A good starting point would be to use the boilerplate code from our
Github [https://github.com/iknl/v6-boilerplate-py]. This section
outlines the steps needed to get to this boilerplate but also provides
some background information.

Note

In this example we use a csv-file. It is also possible to use other
types of data sources. This tutorial makes use of our algorithm wrapper
which is currently only available for csv, SPARQL and Parquet
files.

Other wrappers like SQL, OMOP, etc. are under consideration. Let
us now if you want to use one of these or other datasources.

Now that we have a federated implementation of our algorithm we need to
make it compatible with the vantage6 infrastructure. The infrastructure
handles the communication with the server and provides data access to
the algorithm.

The algorithm consumes a file containing the input. This contains both
the method name to be triggered as well as the arguments provided to the
method. The algorithm also has access to a CSV file (in the future this
could also be a database) on which the algorithm can run. When the
algorithm is finished, it writes back the output to a different file.

The central part of the algorithm has to be able to create (sub)tasks.
These subtasks are responsible for executing the federated part of the
algorithm. The central part of the algorithm can either be executed on
one of the nodes in the vantage6 network or on the machine of a
researcher. In this example we only show the case in which one of the
nodes executes the central part of the algorithm. The node provides the
algorithm with a JWT token so that the central part of the algorithm has
access to the server to post these subtasks.

📂Algorithm Structure

The algorithm needs to be structured as a Python
package [https://packaging.python.org/tutorials/packaging-projects/].
This way the algorithm can be installed within the Docker image. The
minimal file-structure would be:

project_folder
├── Dockerfile
├── setup.py
└── algorithm_pkg
 └── __init__.py

We also recommend adding a README.md, LICENSE and
requirements.txt to the project_folder.

setup.py

Contains the setup method to create a package from your algorithm code.
Here you specify some details about your package and the dependencies it
requires.

from os import path
from codecs import open
from setuptools import setup, find_packages

we're using a README.md, if you do not have this in your folder, simply
replace this with a string.
here = path.abspath(path.dirname(__file__))
with open(path.join(here, 'README.md'), encoding='utf-8') as f:
 long_description = f.read()

Here you specify the meta-data of your package. The `name` argument is
needed in some other steps.
setup(
 name='v6-average-py',
 version="1.0.0",
 description='vantage6 average',
 long_description=long_description,
 long_description_content_type='text/markdown',
 url='https://github.com/IKNL/v6-average-py',
 packages=find_packages(),
 python_requires='>=3.6',
 install_requires=[
 'vantage6-client',
 # list your dependencies here:
 # pandas, ...
]
)

Note

The setup.py above is sufficient in most cases. However if you want to
do more advanced stuff (like adding static data, or a CLI) you can use the
extra arguments [https://packaging.python.org/guides/distributing-packages-using-setuptools/#setup-args]
from setup.

Dockerfile

The Dockerfile contains the recipe for building the Docker image. Typically you
only have to change the argument PKG_NAME to the name of you package.
This name should be the same as as the name you specified in the
setup.py. In our case that would be v6-average-py.

This specifies our base image. This base image contains some commonly used
dependancies and an install from all vantage6 packages. You can specify a
different image here (e.g. python:3). In that case it is important that
`vantage6-client` is a dependancy of you project as this contains the wrapper
we are using in this example.
FROM harbor.vantage6.ai/algorithms/algorithm-base

Change this to the package name of your project. This needs to be the same
as what you specified for the name in the `setup.py`.
ARG PKG_NAME="v6-average-py"

This will install your algorithm into this image.
COPY . /app
RUN pip install /app

This will run your algorithm when the Docker container is started. The
wrapper takes care of the IO handling (communication between node and
algorithm). You dont need to change anything here.
ENV PKG_NAME=${PKG_NAME}
CMD python -c "from vantage6.tools.docker_wrapper import docker_wrapper; docker_wrapper('${PKG_NAME}')"

__init__.py

This contains the code for your algorithm. It is possible to split this
into multiple files, however the methods that should be available to the
researcher should be in this file. You can do that by simply importing
them into this file (e.g. from .average import my_nested_method)

We can distinguish two types of methods that a user can trigger:

	name

	description

	prefix

	arguments

	master

	Central part of the algorithm. Receives a
client as argument which provides an
interface to the central server. This way
the master can create tasks and collect
their results.

	
	(client, data,
*args, **kwargs)

	Remote
procedure
call

	Consumes the data at the node to compute
the partial.

	RPC_

	(data, *args,
**kwargs)

Warning

Everything that is returned by thereturn statement is sent back to the
central vantage6-server. This should never contain any privacy-sensitive
information.

Warning

The client the master method receives is an AlgorithmClient (or a
ContainerClient if you are using an older version), which is different
than the client you use as a user.

For our average algorithm the implementation will look as follows:

import time

from vantage6.tools.util import info

def master(client, data, column_name):
 """Combine partials to global model

 First we collect the parties that participate in the collaboration.
 Then we send a task to all the parties to compute their partial (the
 row count and the column sum). Then we wait for the results to be
 ready. Finally when the results are ready, we combine them to a
 global average.

 Note that the master method also receives the (local) data of the
 node. In most usecases this data argument is not used.

 The client, provided in the first argument, gives an interface to
 the central server. This is needed to create tasks (for the partial
 results) and collect their results later on. Note that this client
 is a different client than the client you use as a user.
 """

 # Info messages can help you when an algorithm crashes. These info
 # messages are stored in a log file which is send to the server when
 # either a task finished or crashes.
 info('Collecting participating organizations')

 # Collect all organization that participate in this collaboration.
 # These organizations will receive the task to compute the partial.
 organizations = client.get_organizations_in_my_collaboration()
 ids = [organization.get("id") for organization in organizations]

 # Request all participating parties to compute their partial. This
 # will create a new task at the central server for them to pick up.
 # We've used a kwarg but is is also possible to use `args`. Although
 # we prefer kwargs as it is clearer.
 info('Requesting partial computation')
 task = client.create_new_task(
 input_={
 'method': 'average_partial',
 'kwargs': {
 'column_name': column_name
 }
 },
 organization_ids=ids
)

 # Now we need to wait untill all organizations(/nodes) finished
 # their partial. We do this by polling the server for results. It is
 # also possible to subscribe to a websocket channel to get status
 # updates.
 info("Waiting for results")
 task_id = task.get("id")
 task = client.get_task(task_id)
 while not task.get("complete"):
 task = client.get_task(task_id)
 info("Waiting for results")
 time.sleep(1)

 # Once we now the partials are complete, we can collect them.
 info("Obtaining results")
 results = client.get_results(task_id=task.get("id"))

 # Now we can combine the partials to a global average.
 global_sum = 0
 global_count = 0
 for result in results:
 global_sum += result["sum"]
 global_count += result["count"]

 return {"average": global_sum / global_count}

def RPC_average_partial(data, column_name):
 """Compute the average partial

 The data argument contains a pandas-dataframe containing the local
 data from the node.
 """

 # extract the column_name from the dataframe.
 info(f'Extracting column {column_name}')
 numbers = data[column_name]

 # compute the sum, and count number of rows
 info('Computing partials')
 local_sum = numbers.sum()
 local_count = len(numbers)

 # return the values as a dict
 return {
 "sum": local_sum,
 "count": local_count
 }

Local testing

Now that we have a vantage6 implementation of the algorithm it is time
to test it. Before we run it in a vantage6 setup we can test it locally
by using the ClientMockProtocol which simulates the communication
with the central server.

Before we can locally test it we need to (editable) install the
algorithm package so that the Mock client can use it. Simply go to the
root directory of your algorithm package (with the setup.py file)
and run the following:

pip install -e .

Then create a script to test the algorithm:

from vantage6.tools.mock_client import ClientMockProtocol

Initialize the mock server. The datasets simulate the local datasets from
the node. In this case we have two parties having two different datasets:
a.csv and b.csv. The module name needs to be the name of your algorithm
package. This is the name you specified in `setup.py`, in our case that
would be v6-average-py.
client = ClientMockProtocol(
 datasets=["local/a.csv", "local/b.csv"],
 module="v6-average-py"
)

to inspect which organization are in your mock client, you can run the
following
organizations = client.get_organizations_in_my_collaboration()
org_ids = ids = [organization["id"] for organization in organizations]

we can either test a RPC method or the master method (which will trigger the
RPC methods also). Lets start by triggering an RPC method and see if that
works. Note that we do *not* specify the RPC_ prefix for the method! In this
example we assume that both a.csv and b.csv contain a numerical column `age`.
average_partial_task = client.create_new_task(
 input_={
 'method':'average_partial',
 'kwargs': {
 'column_name': 'age'
 }
 },
 organization_ids=org_ids
)

You can directly obtain the result (we dont have to wait for nodes to
complete the tasks)
results = client.get_results(average_partial_task.get("id"))
print(results)

To trigger the master method you also need to supply the `master`-flag
to the input. Also note that we only supply the task to a single organization
as we only want to execute the central part of the algorithm once. The master
task takes care of the distribution to the other parties.
average_task = client.create_new_task(
 input_={
 'master': 1,
 'method':'master',
 'kwargs': {
 'column_name': 'age'
 }
 },
 organization_ids=[org_ids[0]]
)
results = client.get_results(average_task.get("id"))
print(results)

Building and Distributing

Now that we have a fully tested algorithm for the vantage6
infrastructure. We need to package it so that it can be distributed to
the data-stations/nodes. Algorithms are delivered in Docker images. So
that’s where we need the Dockerfile for. To build an image from our
algorithm (make sure you have docker installed and it’s running) you can
run the following command from the root directory of your algorithm
project.

docker build -t harbor2.vantage6.ai/demo/average .

The option -t specifies the (unique) identifier used by the
researcher to use this algorithm. Usually this includes the registry
address (harbor2.vantage6.ai) and the project name (demo).

Note

In case you are using docker hub as registry, you do not have to specify
the registry or project as these are set by default to the Docker hub and
your docker hub username.

docker push harbor2.vantage6.ai/demo/average

Note

Reach out to us on Discord [https://discord.gg/yAyFf6Y] if you want to
use our registries (harbor.vantage6.ai and harbor2.vantage6.ai).

4.2.4. Cross-language serialization

It is possible that a vantage6 algorithm is developed in one programming
language, but you would like to run the task from another language. For
these use-cases, the Python algorithm wrapper and client support
cross-language serialization. By default, input to the algorithms and
output back to the client are serialized using pickle. However, it is
possible to define a different serialization format.

Input and output serialization can be specified as follows:

client.post_task(
 name='mytask',
 image='harbor2.vantage6.ai/testing/v6-test-py',
 collaboration_id=COLLABORATION_ID,
 organization_ids=ORGANIZATION_IDS,
 data_format='json', # Specify input format to the algorithm
 input_={
 'method': 'column_names',
 'kwargs': {'data_format': 'json'}, # Specify output format
 }
)

 5. Technical Docs

5. Technical Docs

Contents:

	5.1. Architecture
	5.1.1. Network Actors
	Server

	Data Station

	User or Application

	5.1.2. Components
	vantage6-server

	vantage6-node

	vantage6-clients

	vantage6-UI

	5.1.3. Architecture

	5.2. Features
	5.2.1. Server features
	Two-factor authentication

	SSH Tunnel

	Horizontal scaling

	VPN Server

	Permission management

	API response structure

	5.2.2. Node features

	5.2.3. Algorithm features
	Algorithm wrappers

	5.2.4. Communication between components
	Socket connection

	5.3. Node
	5.3.1. Node class

	5.3.2. NodeContext class
	NodeContext

	5.3.3. DockerNodeContext class

	5.3.4. DockerBaseManager class

	5.3.5. DockerManager class

	5.3.6. DockerTaskManager class

	5.3.7. VPNManager class

	5.3.8. Algorithm execution exceptions

	5.3.9. Proxy server

	5.3.10. vnode-local commands

	5.4. Server
	5.4.1. Main server class
	ServerApp

	5.4.2. Starting the server
	run_server()

	run_dev_server()

	5.4.3. Permission management
	Scope

	Operation

	RuleCollection

	PermissionManager

	5.4.4. Socket functionality
	DefaultSocketNamespace

	5.4.5. API endpoints

	5.4.6. SQLAlchemy models
	Helper (base) classes

	Database models for the API resources

	5.4.7. Mail service
	MailService

	5.4.8. Default roles
	get_default_roles()

 5.1. Architecture

5.1. Architecture

5.1.1. Network Actors

Server

Note

When we refer to the server, this is not just the vantage6-server, but
also other infrastructure components that the vantage6 server relies on.

The server is responsible for coordinating all communication in the vantage6
network. It consists of several components:

	vantage6 server
	Contains the users, organizations, collaborations, tasks and their results.
It handles authentication and authorization to the system and is the
central point of contact for clients and nodes. For more details see
vantage6-server.

	Docker registry
	Contains algorithms stored in Images [https://en.wikipedia.org/wiki/OS-level_virtualization]
which can be used by clients to request a computation. The node will
retrieve the algorithm from this registry and execute it. It is possible to
use Docker hub [https://hub.docker.com/] for this, however some (minor)
features will not work.

An optional additional feature of the Docker registry would be Docker
Notary. This is a service allows verification of the algorithm author.

	VPN server (optionally)
	Is required if algorithms need to be able to engage in peer-to-peer
communication. This is usually the case when working with MPC but can also
be useful for other use cases.

	RabbitMQ message queue (optionally)
	The vantage6-server uses the web-sockets protocol to communicate between
server, nodes and clients it is impossible to horizontally scale the number
of vantage6-server instances. RabbitMQ is used to synchronize the messages
between multiple vantage6-server instances.

Data Station

	vantage6-node
	The data station hosts the node (vantage6-node) and a database. The database
could be in any format, but not all algorithms support all database types.
There is tooling available for CSV, Parquet [https://parquet.apache.org/]
and SPARQL [https://en.wikipedia.org/wiki/SPARQL]. There are other
data-adapters (e.g. OMOP [https://www.ohdsi.org/data-standardization/] and
FHIR [https://hl7.org/fhir/]) in development. For more details see
vantage6-node.

	database
	The node is responsible for executing the algorithms on the local data.
It protects the data by allowing only specified algorithms to be executed after
verifying their origin. The vantage6-node is responsible for picking up the
task, executing the algorithm and sending the results back to the server. The
node needs access to local data. This data can either be a file (e.g. csv) or a
service (e.g. a database).

User or Application

A user or application interacts with the vantage6-server. They can create
tasks and retrieve their results, or manage entities at the server (i.e.
creating or editing users, organizations and collaborations). This can be done
using clients or the user-interface. For more details see vantage6-clients
and vantage6-UI.

5.1.2. Components

vantage6-server

vantage6-node

vantage6-clients

vantage6-UI

Implementation details are given in the /node/node,
/server/server, and /api sections of the documentation.

Note

The following sections are based on our publications:

	VANTAGE6: an open source priVAcy preserviNg federaTed leArninG
infrastructurE for Secure Insight eXchange [https://vantage6.ai/documents/7/moncada-torres2020vantage6_57GU4Gt.pdf]

	An Improved Infrastructure for Privacy-Preserving Analysis of Patient
Data [https://vantage6.ai/documents/14/smits2022improved.pdf]

5.1.3. Architecture

Vantage6 uses a client-server model, which is shown in
architecture-overview. In this scenario, the researcher can pose a
question and using his/her preferred programming language, send it as a task
(also known as computation request) to the (central) server through function
calls. The server is in charge of processing the task as well as of handling
administrative functions such as authentication and authorization. The
requested algorithm is delivered as a container image to the nodes, which have
access to their own (local) data. When the algorithm has reached a solution,
it is transmitted via the server to the researcher. A more detailed
explanation of these components is given as follows.

First, the researcher defines a question. In order to answer it, (s)he
identifies which parties possess the required data and establishes a
collaboration with them. Then, the parties specify which variables are needed
and, more importantly, they agree on their definition. Preferably, this is
done following previously established data standards suitable for the field
and question at hand. Moreover, it is strongly encouraged that the parties
adhere to practices and principles that make their data FAIR (findable,
accessible, interoperable, and reusable).

Once this is done, the researcher can pose his/her question as a task to the
server in an HTTP request. Vantage6 allows the researcher to do so using any
platform of his/her preference (e.g., Python, R, Postman, custom UI, etc.).
The request contains a JSON body which includes information about the
collaboration and the party for which the request is intended, a reference to
a Docker image (corresponding to the selected algorithm), and optional
inputs (usually algorithm parameters). By default, the task is sent to all
parties.

Vantage6’s processing of the task (i.e., server and nodes functionality)
occurs behind the scenes. The researcher only needs to deal with his/her
working environment (e.g., Jupyter notebook, RStudio).

Once the results are ready, the researcher can obtain them in two ways: on
demand (i.e., polling), or through a continuous connection with the server
where messages can be sent/received instantly (i.e., WebSocket channel). Due
to its speed and efficiency, the latter is preferred.

Fig. 5.1 shows a more detailed diagram of vantage6’s
server. First, the server is configured by an administrator through a command
line interface. The server’s parameters (e.g., IP, port, log settings, etc.)
are stored into a configuration file. The latter is loaded when the server
starts. Once the server is running, entities (e.g., tasks, users, nodes) can
be managed through a RESTful API. Furthermore, a WebSocket channel allows
communication of simple messages (e.g., status updates) between the different
components. This reduces the number of server requests (i.e., neither the
researcher nor the nodes need to poll for tasks or results), improving the
speed and efficiency of message transmission.

[image: Architecture of the server]

Fig. 5.1 Vantage6’s server. An administrator uses the command line interface to
configure and start the server. After the server loads its configuration
parameters (which are stored in a YAML file), it exposes its RESTful API.
It is worth noting that the central server’s RESTful API is different from
that of the Docker registry.

The central server also stores metadata and information of the researcher
(user), parties, collaborations, tasks, nodes, and results.
Fig. 5.2 shows its corresponding database model.

[image: Simplified database model]

Fig. 5.2 Database model of the central server (Fig. 5.1). The
users are always members of a party, which can participate in multiple
collaborations. Within a party, users can have different roles (e.g., an
administrator is allowed to accept collaborations). For each collaboration
a party takes place in, it should create a (running) node. Tasks are always
part of a single collaboration and have one or multiple results. In turn,
results are always part of a single task and node.

A single computation request can lead to many requests to the server,
especially when an iterative algorithm is used in combination with many
nodes (Assuming the algorithm does not make heavily use of the
direct-communication feature). Therefore it is important that the server can
handle multiple requests at once. To achief this, the server needs to be able
to scale horizontally [https://en.wikipedia.org/wiki/Scalability#Horizontal_(scale_out)_and_vertical_scaling_(scale_up)].

The server and node have a peristent connection through a websocket channel.
This complicates the horizontal scalability as nodes can connect to different
server instances. E.g. it is not trivial to send a message to all parties when
an event occurs in one of the server instances. This problem can be solved by
introducing a message broken to which all server instances connect to
synchronise all messages.

Algorithm containers can directly communicate (using a ip/port combination)
with other algorithm containers in the network using a VPN service. This VPN
service needs to be configured in the server as the nodes automatically
retrieve the VPN certificates on startup (when the VPN option enabled).

In order for the vantage6-server to retrieve the certificates from the VPN
server, this VPN server required to have an API to do so. Therefore the
open-source EduVPN [https://www.eduvpn.org/] solution is used. Which is
basically a wrapper arround an OpenVPN [https://openvpn.net/] instance to
provide a feature rich interface.

In order to host a node, the parties need to comply with a few minimal system
requirements: Python 3.6+, Docker Community Edition (CE), a stable internet
connection, and access to the data. Figure 5 shows a more detailed diagram of
a single VANTAGE6 node.

In this case, an administrator uses a command line interface to configure the
node’s core and to start the Docker daemon. We can think of the latter as a
service which manages Docker images, containers, volumes, etc. The daemon
starts the node’s core, which in turn instructs the daemon to create the data
volume. The latter contains a copy of the host’s data of interest. It is in
this moment when the party can exert its autonomy by deciding how much of its
data will it allow to contribute to the global solution at hand. After this
step, all the pieces are in place for the task execution.

The node receives a task from the server (which could involve a master or an
algorithm container) and executes it by downloading the requested (and
previously approved) Docker image. The corresponding container accesses the
local data through the node and executes the algorithm with the given
parameters. Then, the algorithm outputs a set of (intermediate) results,
which is sent to the server through the RESTful API. The user or the master
container collects these results of all nodes. If needed, it computes a first
version of the global solution and sends it back to the nodes, which use it
to compute a new set of results. This process could be iteratively until the
model’s global solution converges or after a fixed number of iterations. This
iterative approach is quite generic and allows flexibility by supporting
numerous algorithms that deal with horizontally- or vertically-partitioned
data.

It is worth emphasizing that the data always stay at their original location
It is only intermediate results (i.e., aggregated values, coefficients) that
are transmitted, which immensely reduce the risk of leaking private patient
information. Furthermore, all messages (node to node, node to user) are
end-to-end-encrypted, adding an extra layer of security. It is also worth
mentioning that the parties hosting the nodes are allowed to be heterogeneous:
as long as they comply with the minimal system requirements, they can have
their own hardware and operating system.

 5.2. Features

5.2. Features

The following pages each describe one feature of vantage6 in some detail.

Contents:

	5.2.1. Server features

	5.2.2. Node features

	5.2.3. Algorithm features

	5.2.4. Communication between components

 5.2.1. Server features

5.2.1. Server features

The following pages each describe one feature of the vantage6 server.

Contents:

	Two-factor authentication

	SSH Tunnel

	Horizontal scaling

	VPN Server

	Permission management

	API response structure

 Two-factor authentication

Two-factor authentication

Available since version 3.5.0

The vantage6 infrastructure includes the option to use two-factor
authentication (2FA). This option is set at the server level: the server administrator
decides if it is either enabled or disabled for everyone. Users cannot set this
themselves. Server administrators can choose to require 2FA when
prompted in vserver new, or by adding the option
two_factor_auth: true to the configuration file (see Configure).

Currently, the only 2FA option is to use
Time-based one-time passwords (TOTP) [https://www.twilio.com/docs/glossary/totp]
With this form of 2FA, you use your phone to scan a QR code using an authenticator
app like LastPass authenticator or Google authenticator. When you scan the QR
code, your vantage6 account is added to the authenticator app and will show you
a 6-digit code that changes every 30 seconds.

Setting up 2FA for a user

If a new user logs in, or if a user logs in for the first time after a server
administrator has enabled 2FA, they will be required to set it up. The endpoint /token/user will first verify
that their password is correct, and then set up 2FA. It does so by generating
a random TOTP [https://www.twilio.com/docs/glossary/totp] secret for the
user, which is stored in the database. From this secret, a URI is generated that
can be used to visualize the QR code.

If the user is logging in via the vantage6 user interface, this QR code will be
visualized to allow the user to scan it. Also, users that login via the Python
client will be shown a QR code. In both cases, they also have the option to
manually enter the TOTP secret into their authenticator app, in case scanning
the QR code is not possible.

Users that log in via the R client or directly via the API will have to
visualize the QR code themselves, or manually enter the TOTP secret into their
authenticator app.

Using 2FA

If a user has already setup 2FA tries to login, the endpoint /token/user
will require that they provide their 6-digit TOTP code via the mfa_code
argument. This code will be checked using the TOTP secret stored in the database,
and if it is valid, the user will be logged in.

To prevent users with a slow connection from having difficulty logging in,
valid codes from the 30s period directly prior to the current period will also
be logged in.

Resetting 2FA

When a user loses access to their 2FA, they may reset it via their email. They
should use the endpoint /recover/2fa/lost to get an email with a reset token
and then use the reset token in /recover/2fa/reset to reset 2FA. This
endpoint will give them a new QR code that they can visualize just like the
initial QR code.

 SSH Tunnel

SSH Tunnel

Available since version 3.7.0

Vantage6 algorithms are normally disconnected from the internet, and are
therefore unable to connect to access data that is not connected to the node
on node startup. Via this feature, however, it is possible to connect to a
remote server through a secure SSH connection. This allows you to connect to
a dataset that is hosted on another machine than your node, as long as you
have SSH access to that machine.

Setting up SSH tunneling

1. Create a new SSH key pair

Create a new key pair without a password on your node machine. To do this,
enter the command below in your terminal, and leave the password empty when
prompted.

ssh-keygen -t rsa

You are required not to use a password for the private key, as vantage6 will
set up the SSH tunnel without user intervention and you will therefore not
be able to enter the password in that process.

2. Add the public key to the remote server

Copy the contents of the public key file (your_key.pub) to the remote
server, so that your node will be allowed to connect to it. In the most common
case, this means adding your public key to the ~/.ssh/authorized_keys file
on the remote server.

3. Add the SSH tunnel to your node configuration

An example of the SSH tunnel configuration can be found below. See
here for a full example of a node
configuration file.

databases:
 httpserver: http://my_http:8888
ssh-tunnels:
 - hostname: my_http
 ssh:
 host: my-remote-machine.net
 port: 22
 fingerprint: "ssh-rsa AAAAE2V....wwef987vD0="
 identity:
 username: bob
 key: /path/to/your/private/key
 tunnel:
 bind:
 ip: 0.0.0.0
 port: 8888
 dest:
 ip: 127.0.0.1
 port: 9999

There are a few things to note about the SSH tunnel configuration:

	You can provide multiple SSH tunnels in the ssh-tunnels list, by simply
specifying more blocks of the same format.

	The hostname of each tunnel should come back in one of the databases, so
that they may be accessible to the algorithms.

	The host is the address at which the remote server can be reached. This
is usually an IP address or a domain name. Note that you are able to specify
IP addresses in the local network. Specifying non-local IP addresses is not
recommended, as you might be exposing your node if the IP address is spoofed.

	The fingerprint is the fingerprint of the remote server. You can usually
find it in /etc/ssh/ssh_host_rsa_key.pub on the remote server.

	The identity section contains the username and path to the private key
your node is using. The username is the username you use to log in to the
remote server, in the case above it would be ssh bob@my-remote-machine.net.

	The tunnel section specifies the port on which the SSH tunnel will be
listening, and the port on which the remote server is listening. In the
example above, on the remote machine, there would be a service listening
on port 9999 on the machine itself (which is why the IP is 127.0.0.1 a.k.a.
localhost). The tunnel will be bound to port 8888 on the node machine, and
you should therefore take care to include the correct port in your database
path.

Using the SSH tunnel

How you should use the SSH tunnel depends on the service that you are running
on the other side. In the example above, we are running a HTTP server and
therefore we should obtain data via HTTP requests. In the case of a SQL service,
one would need to send SQL queries to the remote server instead.

Note

We aim to extend this section later with an example of an algorithm that
is using this feature.

 Horizontal scaling

Horizontal scaling

By horizontal scaling, we mean that you can run multiple instances of the
vantage6 server simultaneously to handle a high workload. This is useful when a
single machine running the server is no longer sufficient to handle all
requests.

How it works

Horizontal scaling with vantage6 can be done using a
RabbitMQ server [https://https://www.rabbitmq.com/]. RabbitMQ is a widely
used message broker. Below, we will first explain how we use RabbitMQ, and
then discuss the implementation.

The websocket connection between server and nodes is used to process various
changes in the network’s state. For example, a node can create a new (sub)task
for the other nodes in the collaboration. The server then communicates these
tasks via the socket connection. Now, if we use multiple instances of the
central server, different nodes in the same collaboration may connect to
different instances, and then, the server would not be able to deliver the new
task properly. This is where RabbitMQ comes in.

When RabbitMQ is enabled, the websocket messages are directed over the RabbitMQ
message queue, and delivered to the nodes regardless of which server instance
they are connected to. The RabbitMQ service thus helps to ensure that all
websocket events are still communicated properly to all involved parties.

How to use

If you use multiple server instances, you should always connect them to the same
RabbitMQ instance. You can achieve this by adding your RabbitMQ server when you
create a new server with vserver new, or you can add it later to your
server configuration file with the flag rabbitmq_uri: <your URI>.

A RabbitMQ URI is set up in the following way:

amqp://$user:$password@$host:$port/$vhost

Where $user is the username, $password is the password,
$host is the URL where your RabbitMQ service is running, $port is
the queue’s port (which is 5672 if you are using the RabbitMQ Docker image), and
$vhost is the name of your
virtual host [https://www.rabbitmq.com/vhosts.html] (you could e.g. run one
instance group per vhost).

We recommend running the Docker implementation [https://hub.docker.com/_/rabbitmq]
of RabbitMQ. Optionally, use the ‘management’ container that provides a user
interface to manage your connections on port 15672.

 VPN Server

VPN Server

The VPN server is an optional component of the vantage6 infrastructure that
allows algorithms running on different nodes to communicate with one another.
Its implementation is discussed at length in this paper [https://ebooks.iospress.nl/pdf/doi/10.3233/SHTI220682].

The installation instructions for the VPN server are here.

Now, when is the VPN server useful? The VPN server allows each node to establish
a VPN connection to the VPN server. The algorithm containers can use the VPN connection to communicate
with algorithm containers running on other nodes (provided those nodes have also
established a VPN connection). For each algorithm, the VPN IP address and one
or more ports with labels are stored in the database, which allows other
algorithm containers to find their contact details. This finally allows
algorithms to exchange information quickly without the need to go through the
central server for all communication.

 Permission management

Permission management

Almost every endpoint on the API is under role-based access control: not
everyone and everything is allowed to access it.

There are three types of entities that can attempt to access the API: users,
nodes and algorithm containers. Not every endpoint is available to all three
entities. Therefore, there are decorators such as:

	@only_for(['user', 'container']: only accessible for users and algorithm
containers

	@with_user: only users have access to this endpoint

These decorators ensure that only authenticated entities of the right type can
enter the endpoint.

When an endpoint is then entered, there are additional permission checks. For
users, permissions vary per user. Nodes and algorithm containers all have the
same permissions, but for specific situations there are specific checks. For
instance, nodes are only allowed to update their own results, and not those of
other nodes. These checks are performed within the endpoints themselves.

The following rules are defined:

[image: Rule overview]

Fig. 5.3 The rules that are available per resource, scope, and operation. For example,
the first rule with resource ‘User’, scope ‘Own’ and operation ‘View’ will
allow a user to view their own user details.

The rules have an operation, a scope, and a resource that they work on. For
instance, a rule with operation ‘View’, scope ‘Organization’ and resource
‘Task’, will allow a user to view all tasks of their own organization. There
are 4 operations (view, edit, create and delete) that correspond to GET, PATCH,
CREATE and DELETE requests, respectively. The scopes are:

	Global: all resources of all organizations

	Organization: resources of the user’s own organization

	Collaboration: resources of all organizations that the user’s organization is
in a collaboration with

	Own: these are specific to the user endpoint. Permits a user to see/edit their
own user, but not others within the organization.

 API response structure

API response structure

Each API endpoint returns a JSON response. All responses are structured in the
same way, according to the HATEOAS constraints. An example is detailed below:

>>> client.task.get(task_id)
{
 "id": 1,
 "name": "test",
 "results": [
 {
 "id": 2,
 "link": "/api/result/2",
 "methods": [
 "PATCH",
 "GET"
]
 }
],
 "image": "harbor2.vantage6.ai/testing/v6-test-py",
 ...
}

The response for this task includes the results that are attached to this task.
In compliance with HATEOAS, a link is supplied to the link where the result can
be viewed in more detail.

 5.2.2. Node features

5.2.2. Node features

The following pages each describe one feature of the vantage6 node.

** Under construction **
..

 5.2.3. Algorithm features

5.2.3. Algorithm features

The following pages each describe one feature of vantage6 algorithms.

Contents:

	Algorithm wrappers

 Algorithm wrappers

Algorithm wrappers

Algorithm wrappers are used in algorithms to make it easier for algorithms to
handle input and output.

	list the available wrappers

	links to their docstrings

 5.2.4. Communication between components

5.2.4. Communication between components

The following pages each describe one way that is used to communicate between
different vantage6 components.

Contents:

	Socket connection

 Socket connection

Socket connection

The server is connected to the node(s) via a SocketIO connection, which is a
bidirectional, peristent (event-based) communication line. We use the
Flask-SocketIO on the server side and python-socketio on the node (client) side.

Using the websocket connection goes as follows. If you want to send a message
from the server to the node, you can do something like:

emit('message', 'some message', room='some_room')

which can be picked up by the node by a function like:

class NodeTaskNamespace(ClientNamespace):
 def on_message(self, message):
 self.log.info(message)

 5.3. Node

5.3. Node

Below you will find the structure of the classes and functions that
comprise the node. A few that we would like to highlight:

	Node: the main class in a vantage6 node.

	NodeContext and
DockerNodeContext: classes that handle
the node configuration. The latter inherits from the former and adds some
properties for when the node runs in a docker container.

	DockerManager: Manages the docker containers
and networks of the vantage6 node.

	DockerTaskManager: Start a docker container that
runs an algorithm and manage its lifecycle.

	VPNManager: Sets up the VPN connection (if it is
configured) and manages it.

	vnode-local commands: commands to run
non-dockerized (development) instances of your nodes.

5.3.1. Node class

5.3.2. NodeContext class

	
class NodeContext(instance_name, environment='application', system_folders=False, config_file=None)

	Node context

See DockerNodeContext for the node instance mounts when running as a
dockerized service.

	Parameters:

	
	instance_name (str) – Name of the configuration instance, corresponds to the filename
of the configuration file.

	environment (str, optional) – DTAP environment to be loaded, by default N_ENV

	system_folders (bool, optional) – _description_, by default N_FOL

	config_file (str, optional) – _description_, by default None

	
INST_CONFIG_MANAGER

	alias of NodeConfigurationManager

	
classmethod available_configurations(system_folders=False)

	Find all available server configurations in the default folders.

	Parameters:

	system_folders (bool, optional) – System wide or user configuration, by default N_FOL

	Returns:

	The first list contains validated configuration files, the second
list contains invalid configuration files.

	Return type:

	Tuple[List, List]

	
classmethod config_exists(instance_name, environment='application', system_folders=False)

	Check if a configuration file exists.

	Parameters:

	
	instance_name (str) – Name of the configuration instance, corresponds to the filename
of the configuration file.

	environment (str, optional) – DTAP environment that needs to be present, by default N_ENV

	system_folders (bool, optional) – System wide or user configuration, by default N_FOL

	Returns:

	Whether the configuration file exists or not

	Return type:

	bool

	
property databases

	Dictionary of local databases that are available for this node.

	Returns:

	dictionary with database names as keys and their corresponding
paths as values.

	Return type:

	dict

	
property docker_container_name: str

	Unique Docker container name of the node.

	Returns:

	Unique Docker container name

	Return type:

	str

	
property docker_network_name: str

	Private Docker network name which is unique for this node.

	Returns:

	Docker network name

	Return type:

	str

	
property docker_ssh_volume_name: str

	Docker volume in which the SSH configuration is stored.

	Returns:

	Docker voluem name

	Return type:

	str

	
docker_temporary_volume_name(run_id)

	Docker volume in which temporary data is stored. Temporary data is
linked to a specific run. Multiple algorithm containers can have the
same run id, and therefore the share same temporary volume.

	Parameters:

	run_id (int) – run id provided by the server

	Returns:

	Docker volume name

	Return type:

	str

	
property docker_volume_name: str

	Docker volume in which task data is stored. In case a file based
database is used, this volume contains the database file as well.

	Returns:

	Docker volume name

	Return type:

	str

	
property docker_vpn_volume_name: str

	Docker volume in which the VPN configuration is stored.

	Returns:

	Docker volume name

	Return type:

	str

	
classmethod from_external_config_file(path, environment='application', system_folders=False)

	Create a node context from an external configuration file. External
means that the configuration file is not located in the default folders
but its location is specified by the user.

	Parameters:

	
	path (str) – Path of the configuration file

	environment (str, optional) – DTAP environment to be loaded, by default N_ENV

	system_folders (bool, optional) – System wide or user configuration, by default N_FOL

	Returns:

	Node context object

	Return type:

	NodeContext

	
get_database_uri(label='default')

	Obtain the database URI for a specific database.

	Parameters:

	label (str, optional) – Database label, by default “default”

	Returns:

	URI to the database

	Return type:

	str

	
static type_data_folder(system_folders=False)

	Obtain OS specific data folder where to store node specific data.

	Parameters:

	system_folders (bool, optional) – System wide or user configuration, by default N_FOL

	Returns:

	Path to the data folder

	Return type:

	Path

5.3.3. DockerNodeContext class

5.3.4. DockerBaseManager class

5.3.5. DockerManager class

5.3.6. DockerTaskManager class

5.3.7. VPNManager class

5.3.8. Algorithm execution exceptions

5.3.9. Proxy server

5.3.10. vnode-local commands

 5.4. Server

5.4. Server

The server has a central function in the vantage6 architecture. It stores
in the database which organizations, collaborations, users, etc.
exist. It allows the users and nodes to authenticate and subsequently interact
through the API the server hosts. Finally, it also communicates with
authenticated nodes and users via the socketIO server that is run here.

5.4.1. Main server class

	
class ServerApp(ctx)

	Vantage6 server instance.

	Variables:

	ctx (ServerContext) – Context object that contains the configuration of the server.

	
configure_api()

	Define global API output and its structure.

	
configure_flask()

	Configure the Flask settings of the vantage6 server.

	
configure_jwt()

	Configure JWT authentication.

	
static configure_logging()

	Set third party loggers to a warning level

	
load_resources()

	Import the modules containing API resources.

	
start()

	Start the server.

Before server is really started, some database settings are checked and
(re)set where appropriate.

5.4.2. Starting the server

	
run_server(config, environment='prod', system_folders=True)

	Run a vantage6 server.

	Parameters:

	
	config (str) – Configuration file path

	environment (str) – Configuration environment to use.

	system_folders (bool) – Whether to use system or user folders. Default is True.

	Returns:

	A running instance of the vantage6 server

	Return type:

	ServerApp

Warning

Note that the run_server function is normally not used directly to
start the server, but is used as utility function in places that start the
server. The recommended way to start a server is using uWSGI as is done in
vserver start.

	
run_dev_server(server_app, *args, **kwargs)

	Run a vantage6 development server (outside of a Docker container).

	Parameters:

	server_app (ServerApp) – Instance of a vantage6 server

	Return type:

	None

5.4.3. Permission management

	
class Scope(value)

	Enumerator of all available scopes

	
COLLABORATION = 'col'

	

	
GLOBAL = 'glo'

	

	
ORGANIZATION = 'org'

	

	
OWN = 'own'

	

	
class Operation(value)

	Enumerator of all available operations

	
CREATE = 'c'

	

	
DELETE = 'd'

	

	
EDIT = 'e'

	

	
VIEW = 'v'

	

	
class RuleCollection(name)

	Class that tracks a set of all rules for a certain resource name

	Parameters:

	name (str) – Name of the resource endpoint (e.g. node, organization, user)

	
add(scope, operation)

	Add a rule to the rule collection

	Parameters:

	
	scope (Scope) – Scope within which to apply the rule

	operation (Operation) – What operation the rule applies to

	Return type:

	None

	
class PermissionManager

	Loads the permissions and syncs rules in database with rules defined in
the code

	
appender(name)

	Add a module’s rules to the rule collection

	Parameters:

	name (str) – The name of the module whose rules are to be registered

	Returns:

	A callable register_rule function

	Return type:

	Callable

	
assign_rule_to_container(resource, scope, operation)

	Assign a rule to the container role.

	Parameters:

	
	resource (str) – Resource that the rule applies to

	scope (Scope) – Scope that the rule applies to

	operation (Operation) – Operation that the rule applies to

	Return type:

	None

	
static assign_rule_to_fixed_role(fixedrole, resource, scope, operation)

	Attach a rule to a fixed role (not adjustable by users).

	Parameters:

	
	fixedrole (str) – Name of the fixed role that the rule should be added to

	resource (str) – Resource that the rule applies to

	scope (Scope) – Scope that the rule applies to

	operation (Operation) – Operation that the rule applies to

	Return type:

	None

	
assign_rule_to_node(resource, scope, operation)

	Assign a rule to the Node role.

	Parameters:

	
	resource (str) – Resource that the rule applies to

	scope (Scope) – Scope that the rule applies to

	operation (Operation) – Operation that the rule applies to

	Return type:

	None

	
assign_rule_to_root(name, scope, operation)

	Assign a rule to the root role.

	Return type:

	None

	resource: str
	Resource that the rule applies to

	scope: Scope
	Scope that the rule applies to

	operation: Operation
	Operation that the rule applies to

	
collection(name)

	Get a RuleCollection object. If it doesn’t exist yet, it will be
created.

	Parameters:

	name (str) – Name of the module whose RuleCollection is to be obtained or
created

	Returns:

	The collection of rules belonging to the module name

	Return type:

	RuleCollection

	
load_rules_from_resources()

	Collect all permission rules from all registered API resources

	Return type:

	None

	
register_rule(resource, scope, operation, description=None, assign_to_node=False, assign_to_container=False)

	Register a permission rule in the database.

If a rule already exists, nothing is done. This rule can be used in API
endpoints to determine if a user, node or container can do a certain
operation in a certain scope.

	Parameters:

	
	resource (str) – API resource that the rule applies to

	scope (Scope) – Scope of the rule

	operation (Operation) – Operation of the rule

	description (String, optional) – Human readable description where the rule is used for, by default
None

	assign_to_node (bool, optional) – Whether rule should be assigned to the node role or not. Default
False

	assign_to_container (bool, optional) – Whether rule should be assigned to the container role or not.
Default False

	Return type:

	None

	
static rule_exists_in_db(name, scope, operation)

	Check if the rule exists in the DB.

	Parameters:

	
	name (str) – Name of the rule

	scope (Scope) – Scope of the rule

	operation (Operation) – Operation of the rule

	Returns:

	Whenever this rule exists in the database or not

	Return type:

	bool

	
static verify_user_rules(rules)

	Check if an user, node or container has all the rules

	Parameters:

	rules (List[Rule]) – List of rules that user is checked to have

	Returns:

	False if user has all rules, else a dict with a message

	Return type:

	Union[dict, bool]

5.4.4. Socket functionality

	
class DefaultSocketNamespace(namespace=None)

	This is the default SocketIO namespace. It is used for all the long-running
socket communication between the server and the clients. The clients of the
socket connection are nodes and users.

When socket communication is received from one of the clients, the
functions in this class are called to execute the corresponding action.

	
on_algorithm_status_change(data)

	An algorithm container has changed its status. This status change may
be that the algorithm has finished, crashed, etc. Here we notify the
collaboration of the change.

	Parameters:

	data (Dict) – Dictionary containing parameters on the updated algorithm status.
It should look as follows:

	{
	# node_id where algorithm container was running
“node_id”: 1,
new status of algorithm container
“status”: “active”,
result_id for which the algorithm was running
“result_id”: 1,
collaboration_id for which the algorithm was running
“collaboration_id”: 1

}

	Return type:

	None

	
on_connect()

	A new incoming connection request from a client.

New connections are authenticated using their JWT authorization token
which is obtained from the REST API. A session is created for each
connected client, and lives as long as the connection is active.
Each client is assigned to rooms based on their permissions.

Nodes that are connecting are also set to status ‘online’.

	Return type:

	None

Note

Note that reconnecting clients are treated the same as new clients.

	
on_disconnect()

	Client that disconnects is removed from all rooms they were in.

If nodes disconnect, their status is also set to offline and users may
be alerted to that. Also, any information on the node (e.g.
configuration) is removed from the database.

	Return type:

	None

	
on_error(e)

	An receiving an error from a client, log it.

	Parameters:

	e (str) – Error message that is being displayed in the server log

	Return type:

	None

	
on_message(message)

	On receiving a message from a client, log it.

	Parameters:

	message (str) – Message that is going to be displayed in the server log

	Return type:

	None

	
on_node_info_update(node_config)

	A node sends information about its configuration and other properties.
Store this in the database for the duration of the node’s session.

	Parameters:

	node_config (dict) – Dictionary containing the node’s configuration.

	Return type:

	None

5.4.5. API endpoints

Warning

The API endpoints are also documented on the /apidocs endpoint of the
server (e.g. https://petronas.vantage6.ai/apidocs). We are therefore
not including the API documentation here. Instead, we merely list the
supporting functions and classes.

5.4.6. SQLAlchemy models

Helper (base) classes

	
class Database(*args, **kwargs)

	Database class that is used to connect to the database and create the
database session.

The database is created as a singleton, so that it can be destroyed (as
opposed to a module). This is especially useful when creating unit tests
in which we want fresh databases every now and then.

	
add_col_to_table(column, table_cls)

	Database operation to add column to Table

	Parameters:

	
	column (Column) – The SQLAlchemy model column that is to be added

	table_cls (Table) – The SQLAlchemy table to which the column is to be added

	Return type:

	None

	
add_missing_columns()

	Check database tables to see if columns are missing that are described
in the SQLAlchemy models, and add the missing columns

	Return type:

	None

	
clear_data()

	Clear all data from the database.

	
close()

	Delete all tables and close the database connection. Only used for
unit testing.

	
connect(uri='sqlite:////tmp/test.db', allow_drop_all=False)

	Connect to the database.

	Parameters:

	
	uri (str) – URI of the database. Defaults to a sqlite database in /tmp.

	allow_drop_all (bool, optional) – If True, the database can be dropped. Defaults to False.

	
drop_all()

	Drop all tables in the database.

	
get_non_existing_columns(table_cls, table_name)

	Return a list of columns that are defined in the SQLAlchemy model, but
are not present in the database

	Parameters:

	
	table_cls (Table) – The table that is evaluated

	table_name (str) – The name of the table

	Returns:

	List of SQLAlchemy Column objects that are present in the model,
but not in the database

	Return type:

	List[Column]

	
static is_column_missing(column, column_names, table_name)

	Check if column is missing in the table

	Parameters:

	
	column (Column) – The column that is evaluated

	column_names (List[str]) – A list of all column names in the table

	table_name (str) – The name of the table the column resides in

	Returns:

	True if column is not in the table or a parent table

	Return type:

	boolean

	
class DatabaseSessionManager

	Class to manage DB sessions.

There are 2 different ways a session can be obtained. Either a session used
within a request or a session used elsewhere (e.g. socketIO event, iPython
or within the application itself).

In case of the Flask request, the session is stored in the flask global
g. Then, it can be accessed in every endpoint.

In all other cases the session is attached to the db module.

	
static clear_session()

	Clear the session. If we are in a flask request, the session is
cleared from the flask global g. Otherwise, the session is removed
from the db module.

	Return type:

	None

	
static get_session()

	Get a session. Creates a new session if none exists.

	Returns:

	A database session

	Return type:

	Session

	
static in_flask_request()

	Check if we are in a flask request.

	Returns:

	True if we are in a flask request, False otherwise

	Return type:

	boolean

	
static new_session()

	Create a new session. If we are in a flask request, the session is
stored in the flask global g. Otherwise, the session is stored in
the db module.

	Return type:

	None

	
class ModelBase

	Declarative base that defines default attributes. All data models inherit
from this class.

	
delete()

	Delete the object from the database.

	Return type:

	None

	
classmethod get(id_=None)

	Get a single object by its id, or a list of objects when no id is
specified.

	Parameters:

	id (int, optional) – The id of the object to get. If not specified, return all.

	
classmethod help()

	Print a help message for the class.

	Return type:

	None

	
save()

	Save the object to the database.

	Return type:

	None

Database models for the API resources

	
class AlgorithmPort(**kwargs)

	Table that describes which algorithms are reachable via which ports

Each algorithm with a VPN connection can claim multiple ports via the
Dockerfile EXPOSE and LABEL commands. These claims are saved in
this table. Each algorithm container belongs to a single
Result.

	Variables:

	
	port (int) – The port number that is claimed by the algorithm

	result_id (int) – The id of the Result that this
port belongs to

	label (str) – The label that is claimed by the algorithm

	result (Result) – The Result that this port
belongs to

	
class Authenticatable(**kwargs)

	Parent table of database entities that can authenticate.

Entities that can authenticate are nodes and users. Containers
can also authenticate but these are authenticated indirectly
through the nodes.

	
static hash(secret)

	Hash a secret using bcrypt.

	Parameters:

	secret (str) – Secret to be hashed

	Returns:

	Hashed secret

	Return type:

	str

	
class Collaboration(**kwargs)

	Table that describes which collaborations are available.

Collaborations are combinations of one or more organizations
that do studies together. Each Organization has a
Node for
each collaboration that it is part of. Within a collaboration multiple
Task can be executed.

	Variables:

	
	name (str) – Name of the collaboration

	encrypted (bool) – Whether the collaboration is encrypted or not

	organizations (list[Organization]) – List of organizations that are part of this collaboration

	nodes (list[Node]) – List of nodes that are part of this collaboration

	tasks (list[Task]) – List of tasks that are part of this collaboration

	
classmethod find_by_name(name)

	Find Collaboration by its name.

Note

If multiple collaborations share the same name, the first
collaboration found is returned.

	Parameters:

	name (str) – Name of the collaboration

	Returns:

	Collaboration with the given name, or None if no collaboration
with the given name exists.

	Return type:

	Union[Collaboration, None]

	
get_node_from_organization(organization)

	Returns the node that is part of the given Organization.

	Parameters:

	organization (Organization) – Organization

	Returns:

	Node for the given organization for this collaboration, or None if
there is no node for the given organization.

	Return type:

	Union[Node, None]

	
get_nodes_from_organizations(ids)

	Returns a subset of nodes that are part of the given organizations.

	Parameters:

	ids (list[int]) – List of organization ids

	Returns:

	List of nodes that are part of the given organizations

	Return type:

	list[Node]

	
get_organization_ids()

	Returns a list of organization ids that are part of this collaboration.

	Returns:

	List of organization ids

	Return type:

	list[int]

	
get_task_ids()

	Returns a list of task ids that are part of this collaboration.

	Returns:

	List of task ids

	Return type:

	list[int]

	
classmethod name_exists(name)

	Check if a collaboration with the given name exists.

	Parameters:

	name (str) – Name of the collaboration

	Returns:

	True if a collaboration with the given name exists, else False

	Return type:

	bool

	
class Node(**kwargs)

	Bases: Authenticatable

Table that contains all registered nodes.

	Variables:

	
	id (int) – Primary key

	name (str) – Name of the node

	api_key (str) – API key of the node

	collaboration (Collaboration) – Collaboration that the node belongs to

	organization (Organization) – Organization that the node belongs to

	
check_key(key)

	Checks if the provided key matches the stored key.

	Parameters:

	key (str) – The key to check

	Returns:

	True if the provided key matches the stored key, False otherwise

	Return type:

	bool

	
classmethod exists(organization_id, collaboration_id)

	Check if a node exists for the given organization and collaboration.

	Parameters:

	
	organization_id (int) – The id of the organization

	collaboration_id (int) – The id of the collaboration

	Returns:

	True if a node exists for the given organization and collaboration,
False otherwise.

	Return type:

	bool

	
classmethod get_by_api_key(api_key)

	Returns Node based on the provided API key.

	Parameters:

	api_key (str) – The API key of the node to search for

	Returns:

	Returns the node if a node is associated with api_key, None if no
node is associated with api_key.

	Return type:

	Node | None

	
classmethod get_online_nodes()

	Return nodes that currently have status ‘online’

	Returns:

	List of node models that are currently online

	Return type:

	list[Node]

	
class Organization(**kwargs)

	Table that describes which organizations are available.

An organization is the legal entity that plays a central role in managing
distributed tasks. Each organization contains a public key which other
organizations can use to send encrypted messages that only this
organization can read.

	Variables:

	
	name (str) – Name of the organization

	domain (str) – Domain of the organization

	address1 (str) – Address of the organization

	address2 (str) – Address of the organization

	zipcode (str) – Zipcode of the organization

	country (str) – Country of the organization

	_public_key (bytes) – Public key of the organization

	collaborations (list[Collaboration]) – List of collaborations that this organization is part of

	results (list[Result]) – List of results that are part of this organization

	nodes (list[Node]) – List of nodes that are part of this organization

	users (list[User]) – List of users that are part of this organization

	created_tasks (list[Task]) – List of tasks that are created by this organization

	roles (list[Role]) –

	
classmethod get_by_name(name)

	Returns the organization with the given name.

	Parameters:

	name (str) – Name of the organization

	Returns:

	Organization with the given name if it exists, otherwise None

	Return type:

	Organization | None

	
get_result_ids()

	Returns a list of result ids that are part of this organization.

	Returns:

	List of result ids

	Return type:

	list[int]

	
public_key

	Returns the public key of the organization.

	Returns:

	Public key of the organization. Empty string if no public key is
set.

	Return type:

	str

	
class Result(**kwargs)

	Table that describes which results are available. A Result is the
description of a Task as executed by a Node.

The result (and the input) is encrypted and can be only read by the
intended receiver of the message.

	Variables:

	
	input (str) – Input data of the task

	task_id (int) – Id of the task that was executed

	organization_id (int) – Id of the organization that executed the task

	result (str) – Result of the task

	assigned_at (datetime) – Time when the task was assigned to the node

	started_at (datetime) – Time when the task was started

	finished_at (datetime) – Time when the task was finished

	status (str) – Status of the task

	log (str) – Log of the task

	task (Task) – Task that was executed

	organization (Organization) – Organization that executed the task

	ports (list[AlgorithmPort]) – List of ports that are part of this result

	
complete

	Returns whether the algorithm run has completed or not.

	Returns:

	True if the algorithm run has completed, False otherwise.

	Return type:

	bool

	
property node: Node

	Returns the node that is associated with this result.

	Returns:

	The node that is associated with this result.

	Return type:

	model.node.Node

	
class Role(**kwargs)

	Collection of Rules

	Variables:

	
	name (str) – Name of the role

	description (str) – Description of the role

	organization_id (int) – Id of the organization this role belongs to

	rules (List[Rule]) – List of rules that belong to this role

	organization (Organization) – Organization this role belongs to

	users (List[User]) – List of users that belong to this role

	
classmethod get_by_name(name)

	Get a role by its name.

	Parameters:

	name (str) – Name of the role

	Returns:

	Role with the given name or None if no role with the given name
exists

	Return type:

	Role | None

	
class Rule(**kwargs)

	Rules to determine permissions in an API endpoint.

A rule gives access to a single type of action with a given operation,
scope and resource on which it acts. Note that rules are defined on startup
of the server, based on permissions defined in the endpoints. You cannot
edit the rules in the database.

	Variables:

	
	name (str) – Name of the rule

	operation (Operation) – Operation of the rule

	scope (Scope) – Scope of the rule

	description (str) – Description of the rule

	roles (list[Role]) – Roles that have this rule

	users (list[User]) – Users that have this rule

	
classmethod get_by_(name, scope, operation)

	Get a rule by its name, scope and operation.

	Parameters:

	
	name (str) – Name of the resource on which the rule acts, e.g. ‘node’

	scope (str) – Scope of the rule, e.g. ‘organization’

	operation (str) – Operation of the rule, e.g. ‘view’

	Returns:

	Rule with the given name, scope and operation or None if no rule
with the given name, scope and operation exists

	Return type:

	Rule | None

	
class Task(**kwargs)

	Table that describes all tasks.

A task can contain multiple Results for multiple organizations. The input
of the task is different for each organization (due to the encryption).
Therefore the input for the task is encrypted for each organization
separately. The task originates from an organization to which the results
need to be encrypted, therefore the originating organization is also logged

	Variables:

	
	name (str) – Name of the task

	description (str) – Description of the task

	image (str) – Name of the docker image that needs to be executed

	collaboration_id (int) – Id of the collaboration that this task belongs to

	run_id (int) – Run id of the task

	parent_id (int) – Id of the parent task (if any)

	database (str) – Name of the database that needs to be used for this task

	initiator_id (int) – Id of the organization that created this task

	init_user_id (int) – Id of the user that created this task

	collaboration (Collaboration) – Collaboration that this task belongs to

	parent (Task) – Parent task (if any)

	results (list[Result]) – List of results that are part of this task

	initiator (Organization) – Organization that created this task

	init_user (User) – User that created this task

	
classmethod next_run_id()

	Get the next available run id for a new task.

	Returns:

	Next available run id

	Return type:

	int

	
results_for_node(node)

	Get all results for a given node.

	Parameters:

	node (model.node.Node) – Node for which to get the results

	Returns:

	List of results for the given node

	Return type:

	List[model.result.Result]

	
class User(**kwargs)

	Bases: Authenticatable

Table to keep track of Users (persons) that can access the system.

Users always belong to an organization and can have certain
rights within an organization.

	Variables:

	
	username (str) – Username of the user

	password (str) – Password of the user

	firstname (str) – First name of the user

	lastname (str) – Last name of the user

	email (str) – Email address of the user

	organization_id (int) – Foreign key to the organization to which the user belongs

	failed_login_attempts (int) – Number of failed login attempts

	last_login_attempt (datetime.datetime) – Date and time of the last login attempt

	otp_secret (str) – Secret key for one time passwords

	organization (Organization) – Organization to which the user belongs

	roles (list[Role]) – Roles that the user has

	rules (list[Rule]) – Rules that the user has

	created_tasks (list[Task]) – Tasks that the user has created

	
can(resource, scope, operation)

	Check if user is allowed to execute a certain action

	Parameters:

	
	resource (str) – The resource type on which the action is to be performed

	scope (Scope) – The scope within which the user wants to perform an action

	operation (Operation) – The operation a user wants to execute

	Returns:

	Whether or not user is allowed to execute the requested operation
on the resource

	Return type:

	bool

	
check_password(pw)

	Check if the password is correct

	Parameters:

	pw (str) – Password to check

	Returns:

	Whether or not the password is correct

	Return type:

	bool

	
classmethod exists(field, value)

	Checks if user with certain key-value exists

	Parameters:

	
	field (str) – Name of the attribute to check

	value (str) – Value of the attribute to check

	Returns:

	Whether or not user with given key-value exists

	Return type:

	bool

	
classmethod get_by_email(email)

	Get a user by their email

	Parameters:

	email (str) – Email of the user

	Returns:

	User with the given email

	Return type:

	User

	Raises:

	NoResultFound – If no user with the given email exists

	
classmethod get_by_username(username)

	Get a user by their username

	Parameters:

	username (str) – Username of the user

	Returns:

	User with the given username

	Return type:

	User

	Raises:

	NoResultFound – If no user with the given username exists

	
is_blocked(max_failed_attempts, inactivation_in_minutes)

	Check if user can login or if they are temporarily blocked because they
entered a wrong password too often

	Parameters:

	
	max_failed_attempts (int) – Maximum number of attempts to login before temporary deactivation

	inactivation_minutes (int) – How many minutes an account is deactivated

	Return type:

	Tuple[bool, Optional[str]]

	Returns:

	
	bool – Whether or not user is blocked temporarily

	str | None – Message if user is blocked, else None

	
set_password(pw)

	Set the password of the current user. This function doesn’t save the
new password to the database

	Parameters:

	pw (str) – The new password

	Returns:

	If the new password fails to pass the checks, a message is
returned. Else, none is returned

	Return type:

	str | None

	
classmethod username_exists(username)

	Checks if user with certain username exists

	Parameters:

	username (str) – Username to check

	Returns:

	Whether or not user with given username exists

	Return type:

	bool

Database models that link resources together

The Member table is used to link organizations and collaborations together.
Each line in the table represents that a certain organization is member
of a certain collaboration by storing the ids of the organization and
collaboration.

	
Member

	alias of Table(‘Member’, MetaData(), Column(‘organization_id’, Integer(), ForeignKey(‘organization.id’), table=<Member>), Column(‘collaboration_id’, Integer(), ForeignKey(‘collaboration.id’), table=<Member>), schema=None)

The Permission table defines which roles have been assigned to which users.
It can contain multiple entries for the same user if they have been assigned
multiple roles.

The UserPermission table defines which extra rules have been assigned to which
users. Apart from roles, users may be assigned extra permissions that allow
them to execute one specific action. This table is used to store those, and
may contain multiple entries for the same user.

	
Permission

	alias of Table(‘Permission’, MetaData(), Column(‘role_id’, Integer(), ForeignKey(‘role.id’), table=<Permission>), Column(‘user_id’, Integer(), ForeignKey(‘user.id’), table=<Permission>), schema=None)

	
UserPermission

	alias of Table(‘UserPermission’, MetaData(), Column(‘rule_id’, Integer(), ForeignKey(‘rule.id’), table=<UserPermission>), Column(‘user_id’, Integer(), ForeignKey(‘user.id’), table=<UserPermission>), schema=None)

The role_rule_assocation table defines which rules have been assigned to which
roles. Each line contains a rule_id that is a member of a certain role_id. Each
role will usually have multiple rules assigned to it.

	
role_rule_association

	alias of Table(‘role_rule_association’, MetaData(), Column(‘role_id’, Integer(), ForeignKey(‘role.id’), table=<role_rule_association>), Column(‘rule_id’, Integer(), ForeignKey(‘rule.id’), table=<role_rule_association>), schema=None)

5.4.7. Mail service

	
class MailService(app, mail)

	Send emails from the service email account

	Parameters:

	
	app (flask.Flask) – The vantage6 flask application

	mail (flask_mail.Mail) – An instance of the Flask mail class

	
send_email(subject, sender, recipients, text_body, html_body)

	Send an email.

This is used for service emails, e.g. to help users reset their
password.

	Parameters:

	
	subject (str) – Subject of the email

	sender (str) – Email address of the sender

	recipients (List[str]) – List of email addresses of recipients

	text_body (str) – Email body in plain text

	html_body (str) – Email body in HTML

	Return type:

	None

5.4.8. Default roles

	
get_default_roles(db)

	Get a list containing the default roles and their rules, so that they may
be created in the database

	Parameters:

	db – The vantage6.server.db module

	Returns:

	A list with dictionaries that each describe one of the roles. Each role
dictionary contains the following:

	name: str
	Name of the role

	description: str
	Description of the role

	rules: List[int]
	A list of rule id’s that the role contains

	Return type:

	List[Dict]

 6. Developer community

6. Developer community

As an open-source platform, we welcome anyone who would like to contribute to
the vantage6 code and/or documentation. The following sections are meant to
clarify our processes in development, documentation and releasing.

Contents:

	6.1. Contribute
	6.1.1. Support questions

	6.1.2. Reporting issues

	6.1.3. Security vulnerabilities

	6.1.4. Community Meetings

	6.1.5. Submitting patches
	Setup your environment

	Coding

	Local test setup

	Unit tests & coverage

	Pull Request

	Documentation

	6.2. Documentation
	6.2.1. How this documentation is created

	6.2.2. API Documenation with OAS3+

	6.3. Release
	6.3.1. Version format

	6.3.2. Create a release

	6.3.3. The release pipeline

	6.3.4. Distribute release

	6.3.5. User Interface release

 6.1. Contribute

6.1. Contribute

6.1.1. Support questions

If you have questions, you can use

	Github discussions [https://github.com/vantage6/vantage6/discussions]

	Ask us on Discord [https://discord.gg/yAyFf6Y]

We prefer that you ask questions via these routes rather than creating Github
issues. The issue tracker is intended to address bugs, feature requests, and
code changes.

6.1.2. Reporting issues

Issues can be posted at our Github issue page [https://github.com/vantage6/vantage6/issues],
or, if you have issues that are specific to the user interface, please post
them to the UI issue page [https://github.com/vantage6/vantage6-UI/issues].

We distinguish between the following types of issues:

	Bug report: you encountered broken code

	Feature request: you want something to be added

	Change request: there is a something you would like to be different but it
is not considered a new feature nor is something broken

	Security vulnerabilities: you found a security issue

Each issue type has its own template. Using these templates makes it easier for
us to manage them.

Warning

Security vulnerabilities should not be reported in the Github issue tracker
as they should not be publically visible. To see how we deal with security
vulnerabilities read our policy [https://github.com/vantage6/vantage6/blob/main/SECURITY.md].

See the Security vulnerabilities section when you want to release a
security patch yourself.

We distibute the open issues in sprints and hotfixes.
You can check out these boards here:

	Sprints [https://github.com/orgs/vantage6/projects/1]

	Hotfixes [https://github.com/orgs/vantage6/projects/2]

When a high impact bug is reported, we will put it on the hotfix board and
create a patch release as soon as possible.

The sprint board tracks which issues we plan to fix in which upcoming release.
Low-impact bugs, new features and changes will be scheduled into a sprint
periodically. We automatically assign the label ‘new’ to all newly reported
issues to track which issues should still be scheduled.

If you would like to fix an existing bug or create a new feature, check
Submitting patches for more details on e.g. how to set up a local development
environment and how the release process works. We prefer that
you let us know you what are working on so we prevent duplicate work.

6.1.3. Security vulnerabilities

If you are a member of the Vantage6 Github organization, you can create an
security advisory in the Security [https://github.com/vantage6/vantage6/security/advisories] tab. See Table 6.1 on what to fill in.

If you are not a member, please reach out directly to Frank Martin and/or Bart
van Beusekom, or any other project member. They can then create a security
advisory for you.

Table 6.1 Advisory details

	Name

	Details

	Ecosystem

	Set to pip

	Package name

	Set to vantage6

	Affected versions

	Specify the versions (or set of verions) that are affected

	Patched version

	Version where the issue is addessed, you can fill this in later when
the patch is released.

	Severity

	Determine severity score using this [https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator] tool. Then use table Table 6.2 to
determine the level from this score.

	Common weakness enumerator (CWE)

	Find the CWE (or multiple) on this [https://cwe.mitre.org/] website.

Table 6.2 Severity

	Score

	Level

	0.1-3.9

	Low

	4.0-6.9

	Medium

	7.0-8.9

	High

	9.0-10.0

	Critical

Once the advisory has been created it is possible to create a private fork from
there (Look for the button Start a temporary private fork). This private
fork should be used to solve the issue.

From the same page you should request a CVE number so we can alert dependent
software projects. Github will review the request. We are not sure what this
entails, but so far they approved all advisories.

6.1.4. Community Meetings

We host bi-monthly community meetings intended for aligning development
efforts. Anyone is welcome to join although they are mainly intended for
infrastructure and algorithm developers. There is an opportunity to present
what your team is working on an find collaboration partners.

Community meetings are usually held on the third Thursday of the month at 10:00
AM CET on Microsoft Teams. Reach out on Discord [https://discord.gg/yAyFf6Y]
if you want to join the community meeting.

For more information and slides from previous meetings, check our
website [https://vantage6.ai/community-meetings/].

6.1.5. Submitting patches

If there is not an open issue for what you want to submit, please open one for
discussion before submitting the PR. We encourage you to reach out to us on
Discord [https://discord.gg/yAyFf6Y], so that we can work together to ensure
your contribution is added to the repository.

The workflow below is specific to the
vantage6 infrastructure repository [https://github.com/vantage6/vantage6].
However, the concepts for our other repositories are the same. Then, modify
the links below and ignore steps that may be irrelevant to that particular
repository.

Setup your environment

	Make sure you have a Github account

	Install and configure git

	(Optional) install and configure Miniconda

	Clone the main repository locally:

git clone https://github.com/vantage6/vantage6
cd vantage6

	Add your fork as a remote to push your work to. Replace {username} with
your username.

git remote add fork https://github.com/{username}/vantage6

	Create a virtual environment to work in. For miniconda:

conda create -n vantage6 python=3.10
conda activate vantage6

It is also possible to use virtualenv if you do not have a conda
installation.

	Update pip and setuptools

python -m pip install --upgrade pip setuptools

	Install vantage6 as development environment with the -e flag.

pip install -e .

Coding

First, create a branch you can work on. Make sure you branch of the latest
main branch:

git fetch origin
git checkout -b your-branch-name origin/main

Then you can create your bugfix, change or feature. Make sure to commit
frequently. Preferably include tests that cover your changes.

Finally, push your commits to your fork on Github and create a pull request.

git push --set-upstream fork your-branch-name

Please apply the PEP8 [https://peps.python.org/pep-0008/] standards to your
code.

Local test setup

To test your code changes, it may be useful to create a local test setup.
There are several ways of doing this.

	Use the command vserver-local and vnode-local. This runs the
application in your current activated Python environment.

	Use the command vserver and vnode in combination with the options
--mount-src and optionally --image.

	The --mount-src option will run your current code in the docker image.
The provided path should point towards the root folder of the vantage6
repository [https://github.com/vantage6/vantage6].

	The --image can be used to point towards a custom build infrastructure
image. Note that when your code update includes dependency upgrades you
need to build a custom infrastructure image as the ‘old’ image does not
contain these and the --mount-src option will only overwrite the
source and not re-install dependencies.

Note

If you are using Docker Desktop (which is usually the case if you are on
Windows or MacOS) and want to setup a test environment, you should use
http://host.docker.interal for the server address in the node
configuration file. You should not use http://localhost in that case as
that points to the localhost within the docker container instead of the
system-wide localhost.

Unit tests & coverage

You can execute unit tests using the test command in the Makefile:

make test

If you want to execute a specific unit test (e.g. the one you just created or
one that is failing), you can use a command like:

python -m unittest tests_folder.test_filename.TestClassName.test_name

This command assumes you are in the directory above tests_folder. If you are
inside the tests_folder, then you should remove that part.

Pull Request

Please consider first which branch you want to merge your contribution into.
Patches are usually directly merged into main, but features are
usually merged into a development branch (e.g. dev3 for version 3) before
being merged into the main branch.

Before the PR is merged, it should pass the following requirements:

	At least one approved review of a code owner

	All unit tests [https://github.com/vantage6/vantage6/actions/workflows/unit_tests.yml] should complete

	CodeQL [https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql] (vulnerability scanning) should pass

	Codacy [https://app.codacy.com/gh/vantage6/vantage6/dashboard] - Code
quality checks - should be OK

	Coveralls [https://coveralls.io/github/vantage6/vantage6] - Code coverage
analysis - should not decrease

Documentation

Depending on the changes you made, you may need to add a little (or a lot) of
documentation. For more information on how and where to edit the documentation,
see the section Documentation.

Consider which documentation you need to update:

	User documentation.
Update it if your change led to a different expierence for the end-user

	Technical documentation.
Update it if you added new functionality. Check if your function docstrings
have also been added (see last bullet below).

	OAS (Open API Specification).
If you changed input/output for any of the API endpoints, make sure to add
it to the docstrings. See API Documenation with OAS3+ for more details.

	Function docstrings
These should always be documented using the
numpy format [https://numpydoc.readthedocs.io/en/latest/format.html].
Such docstrings can then be used to automatically generate parts of the
technical documentation space.

 6.2. Documentation

6.2. Documentation

The vantage6 framework is documented on this website.
Additionally, there is API Documenation with OAS3+. This documentation is
shipped directly with the server instance. All of these documentation pages are
described in more detail below.

6.2.1. How this documentation is created

The source of the documentation you are currently reading is located
here [https://github.com/vantage6/vantage6/tree/main/docs/], in the docs
folder of the vantage6 repository itself.

To build the documentation locally, there are two options. To build a static
version, you can do make html when you are in the docs directory.
If you want to automatically refresh the documentation whenever you make a
change, you can use sphinx-autobuild [https://pypi.org/project/sphinx-autobuild/].
Assuming you are in the main directory of the repository, run the following
commands:

pip install -r docs/requirements.txt
sphinx-autobuild docs docs/_build/html --watch .

Of course, you only have to install the requirements if you had not done so
before.

Then you can access the documentation on http://127.0.0.1:8000. The
--watch option makes sure that if you make changes to either the
documentation text or the docstrings, the documentation pages will also be
reloaded.

This documentation is automatically built and published on a commit (on
certain branches, including main). Both Frank and Bart have access to the
vantage6 project when logged into readthedocs. Here they can manage which
branches are to be synced, manage the webhook used to trigger a build, and some
other -less important- settings.

The files in this documentation use the rst format, to see the syntax view
this cheatsheet [https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst].

6.2.2. API Documenation with OAS3+

The API documentation is hosted at the server at the /apidocs endpoint. This documentation is generated from the docstrings using Flasgger [https://github.com/flasgger/flasgger]. The source of this documentation can be found in the docstrings of the API functions.

If you are unfamiliar with OAS3+, note that it was formerly known as Swagger.

	An example of such a docsting:
	"""Summary of the endpoint

 description: >-
 Short description on what the endpoint does, and which users have
 access or which permissions are required.

 parameters:
 - in: path
 name: id
 schema:
 type: integer
 description: some identifier
 required: true

 responses:
 200:
 description: Ok
 401:
 description: Unauthorized or missing permission

 security:
 - bearerAuth: []

 tags: ["Group"]
"""

 6.3. Release

6.3. Release

This page is intended to provide information about our release process. First,
we discuss the version formatting, after which we discuss the actual creation
and distribution of a release.

6.3.1. Version format

Semantic versioning is used: Major.Minor.Patch.Pre[N].Post<n>.

	Major is used for releasing breaking changes. For example, when the database
	model has changed, a new major version should be issued.

	Minor is used for releasing new features, enhancements and other changes that
	are compatible with all other components. An example is the release of a new endpoint.

Patch is used for bugfixes and other minor changes

	Pre[N] is used for alpha (a), beta (b) and release candidates (rc) releases and the
	build number is appended (e.g. 2.0.1b1 indicates the first beta-build of version 2.0.1)

	Post[N] is used for a rebuild where no code changes have been made, but where,
	for example, a dependency has been updated and a rebuild is required.

Warning

Post releases are only used by versioning the Docker images.
Code changes should never be released with a .post[N] version.

6.3.2. Create a release

To create a new release, one should go through the following steps:

	Check out the correct branch of the vantage6 [https://github.com/vantage6/vantage6] repository and pull the latest version:

git checkout main
git pull

Make sure the branch is up-to-date. Patches are usually directly
merged into main, but for minor or major releases you usually need
to execute a pull request from a development branch.

	Create a tag for the release. See Version format for more details on version names:

git tag version/x.y.z

	Push the tag to the remote. This will trigger the release pipeline on Github:

git push origin version/x.y.z

Note

The release process is protected and can only be executed by certain
people. Reach out if you have any questions regarding this.

6.3.3. The release pipeline

The release pipeline executes the following steps:

	It checks if the tag contains a valid version specification. If it does not,
the process it stopped.

	Update the version in the repository code to the version specified in the
tag and commit this back to the main branch.

	Install the dependencies and build the Python package.

	Upload the package to PyPi.

	Build and push the Docker image to harbor2.vantage6.ai [https://harbor2.vantage6.ai].

	Post a message in Discord to alert the community of the new release. This
is not done if the version is a pre-release (e.g. version/x.y.0rc1).

Note

If you specify a tag with a version that already exists, the build pipeline
will fail as the upload to PyPi is rejected.

The release pipeline uses a number of environment variables to, for instance,
authenticate to PyPi and Discord. These variables are listed and explained
in the table below.

Table 6.3 Environment variables

	Secret

	Description

	COMMIT_PAT

	Github Personal Access Token with commit privileges. This is linked to
an individual user with admin right as the commit on the main needs
to bypass the protections. There is unfortunately not -yet- a good
solution for this.

	ADD_TO_PROJECT_PAT

	Github Personal Access Token with project management privileges. This
token is used to add new issues to project boards.

	COVERALLS_TOKEN

	Token from coveralls to post the test coverage stats.

	DOCKER_TOKEN

	Token used together DOCKER_USERNAME to upload the container images
to our https://harbor2.vantage6.ai.

	DOCKER_USERNAME

	See DOCKER_TOKEN.

	PYPI_TOKEN

	Token used to upload the Python packages to PyPi.

	DISCORD_RELEASE_TOKEN

	Token to post a message to the Discord community when a new release is
published.

6.3.4. Distribute release

Nodes and servers that are already running will automatically be upgraded to
the latest version of their major release when they are restarted. This
happens by pulling the newly released docker image. Note that the major
release is never automatically updated: for example, a node running version
2.1.0 will update to 2.1.1 or 2.2.0, but never to 3.0.0. Depending on the
version of Vantage6 that is being used, there is a reserved Docker image tag
for distributing the upgrades. These are the following:

	Tag

	Description

	petronas

	3.x.x release

	harukas

	2.x.x release

	troltunga

	1.x.x release

Docker images can be pulled manually with e.g.

docker pull harbor2.vantage6.ai/infrastructure/server:petronas
docker pull harbor2.vantage6.ai/infrastructure/node:3.1.0

6.3.5. User Interface release

The release process for the user interface (UI) is very similar to the release
of the infrastructure detailed above. The same versioning format is used, and
when you push a version tag, the automated release process is triggered.

We have semi-synchronized the version of the UI with that of the infrastructure.
That is, we try to release major and minor versions at the same time. For
example, if we are currently at version 3.5 and release version 3.6, we release
it both for the infrastructure and for the UI. However, there may be different
patch versions for both: the latest version for the infrastructure may then be
3.6.2 while the UI may still be at 3.6.

The release pipeline for the UI executes the following steps:

	Version tag is verified (same as infrastructure).

	Version is updated in the code (same as infrastructure).

	Application is built.

	Docker images are built and released to harbor2.

	Application is pushed to our UI deployment slot (an Azure app service).

 7. Glossary

7. Glossary

The following is a list of definitions used in vantage6.

A

	Autonomy: the ability of a party to be in charge of the control
and management of its own data.

C

	Collaboration: an agreement between two or more parties to
participate in a study (i.e., to answer a research question).

D

	Distributed learning: see Federated Learning

	Docker: a platform that uses operating system virtualization to
deliver software in packages called containers. It is worth noting
that although they are often confused, Docker containers are not virtual machines [https://www.docker.com/blog/containers-are-not-vms/].

	Data Station: Virtual Machine containing the vantage6-node application
and a database.

F

	FAIR data: data that are Findable, Accessible, Interoperable, and
Reusable. For more information, see the original
paper [https://www.nature.com/articles/sdata201618.pdf?origin=ppub].

	Federated learning: an approach for analyzing data that are
spread across different parties. Its main idea is that parties run
computations on their local data, yielding either aggregated
parameters or encrypted values. These are then shared to generate a
global (statistical) model. In other words, instead of bringing the
data to the algorithms, federated learning brings the algorithms to
the data. This way, patient-sensitive information is not disclosed.
Federated learning is some times known as distributed learning.
However, we try to avoid this term, since it can be confused with
distributed computing, where different computers share their
processing power to solve very complex calculations.

H

	Heterogeneity: the condition in which in a federated learning
scenario, parties are allowed to have differences in hardware and
software (i.e., operating systems).

	Horizontally-partitioned data: data spread across different
parties where the latter have the same features of different
instances (i.e., patients). See also vertically-partitioned data.

[image: Horizontally partitioned data]

Fig. 7.1 Horizontally-partitioned data

N

	Node: vantage6 node application that runs at a Data Station which
has access to the local data.

M

	Multi-party computation: an approach to perform analyses across
different parties by performing operations on encrypted data.

P

	Party: an entity that takes part in one (or more) collaborations

	Python: a high-level general purpose programming language. It
aims to help programmers write clear, logical code. vantage6 is
written in Python [https://github.com/vantage6/vantage6].

S

	Secure multi-party computation: see Multi-party computation

	Server: Public access point of the vantage6 infrastructure. Contains at
least the vantage6-server application but can also host the optional
components: Docker registry, VPN server and RabbitMQ. In this documentation
space we try to be explicit when we talk about _server_ and
vantage6-server, however you might encounter _server_ where
vantage6-server should have been.

V

	vantage6: priVAcy preserviNg federaTed leArninG infrastructurE
for Secure Insight eXchange. In short, vantage6 is an infrastructure
for executing federated learning analyses. However, it can also be
used as a FAIR data station and as a model repository.

	Vertically-partitioned data: data spread across different parties
where the latter have different features of the same instances (i.e.,
patients). See also horizontally-partitioned data.

[image: Vertically partitioned data]

Fig. 7.2 Vertically partitioned data

 Release notes

Release notes

3.8.0

8 march 2023

	Security

	Refresh tokens are no longer indefinitely valid (
CVE#CVE-2023-23929 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-23929],
commit [https://github.com/vantage6/vantage6/commit/48ebfca42359e9a6743e9598684585e2522cdce8]).

	It was possible to obtain usernames by brute forcing the login since v3.3.0.
This was due to a change where users got to see a message their account was
blocked after N failed login attempts. Now, users get an email instead if
their account is blocked (
CVE#CVE-2022-39228 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-39228],
commit [https://github.com/vantage6/vantage6/commit/ab4381c35d24add06f75d5a8a284321f7a340bd2]
).

	Assigning existing users to a different organizations was possible. This may
lead to unintended access: if a user from organization A is accidentally
assigned to organization B, they will retain their permissions and
therefore might be able to access resources they should not be allowed to
access (CVE#CVE-2023-22738 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22738],
commit [https://github.com/vantage6/vantage6/commit/798aca1de142a4eca175ef51112e2235642f4f24]).

	Feature

	Python version upgrade to 3.10 and many dependencies are upgraded (
PR#513 [https://github.com/vantage6/vantage6/pull/513],
Issue#251 [https://github.com/vantage6/vantage6/issues/251]).

	Added AlgorithmClient which will replace ContainerClient in v4.0.
For now, the new AlgorithmClient can be used by specifying
use_new_client=True in the algorithm wrapper (
PR#510 [https://github.com/vantage6/vantage6/pull/510],
Issue#493 [https://github.com/vantage6/vantage6/issues/493]).

	It is now possible to request some of the node configuration settings, e.g.
which algorithms they allow to be run (
PR#523 [https://github.com/vantage6/vantage6/pull/523],
Issue#12 [https://github.com/vantage6/vantage6/issues/12]).

	Added auto_wrapper which detects the data source types and reads the
data accordingly. This removes the need to rebuild every algorithm for
every data source type (
PR#555 [https://github.com/vantage6/vantage6/pull/555],
Issue#553 [https://github.com/vantage6/vantage6/issues/553]).

	New endpoint added /vpn/algorithm/addresses for algorithms to obtain
addresses for containers that are part of the same computation task (
PR#501 [https://github.com/vantage6/vantage6/pull/501],
Issue#499 [https://github.com/vantage6/vantage6/issues/499]).

	Added the option to allow only allow certain organization and/or users
to run tasks on your node. This can be done by using the policies
configuration option. Note that the allowed_images option is now
nested under the policies option (
Issue#335 [https://github.com/vantage6/vantage6/issues/335],
PR#556 [https://github.com/vantage6/vantage6/pull/556])

	Change

	Some changes have been made to the release pipeline (
PR#519 [https://github.com/vantage6/vantage6/pull/519],
PR#488 [https://github.com/vantage6/vantage6/pull/488],
PR#500 [https://github.com/vantage6/vantage6/pull/500],
Issue#485 [https://github.com/vantage6/vantage6/issues/485]).

	Removed unused script to start the shell (
PR#494 [https://github.com/vantage6/vantage6/pull/494]).

	Bugfix

	Algorithm containers running on the same node could not communicate with
each other through the VPN. This has been fixed (
PR#532 [https://github.com/vantage6/vantage6/pull/532],
Issue#336 [https://github.com/vantage6/vantage6/issues/336]).

3.7.3

22 february 2023

	Bugfix

	A database commit in 3.7.2 was done on the wrong variable, this has been
corrected (PR#547 [https://github.com/vantage6/vantage6/pull/547],
Issue#534 [https://github.com/vantage6/vantage6/issues/534]).

	Delete entries in the VPN port table after the algorithm has completed
(PR#548 [https://github.com/vantage6/vantage6/pull/548]).

	Limit number of characters of the task input printed to the logs
(PR#550 [https://github.com/vantage6/vantage6/pull/550]).

3.7.2

20 february 2023

	Bugfix

	In 3.7.1, some sessions were closed, but not all. Now, sessions are also
terminated in the socketIO events
(PR#543 [https://github.com/vantage6/vantage6/pull/543],
Issue#534 [https://github.com/vantage6/vantage6/issues/534]).

	Latest versions of VPN images were not automatically downloaded by node
on VPN connection startup. This has been corrected (
PR#533 [https://github.com/vantage6/vantage6/pull/542]).

3.7.1

16 february 2023

	Change

	Some changes to the release pipeline.

	Bugfix

	iptables dependency was missing in the VPN client container (
PR#533 [https://github.com/vantage6/vantage6/pull/533]
Issue#518 [https://github.com/vantage6/vantage6/issues/518]).

	Fixed a bug that did not close Postgres DB sessions, resulting in a dead
server (PR#540 [https://github.com/vantage6/vantage6/pull/540],
Issue#534 [https://github.com/vantage6/vantage6/issues/534]).

3.7.0

25 january 2023

	Feature

	SSH tunnels are available on the node. This allows nodes to connect to
other machines over SSH, thereby greatly expanding the options to connect
databases and other services to the node, which before could only be made
available to the algorithms if they were running on the same machine as the
node (PR#461 [https://github.com/vantage6/vantage6/pull/461],
Issue#162 [https://github.com/vantage6/vantage6/issues/162]).

	For two-factor authentication, the information given to the authenticator
app has been updated to include a clearer description of the server and
username (PR#483 [https://github.com/vantage6/vantage6/pull/483],
Issue#405 [https://github.com/vantage6/vantage6/issues/405]).

	Added the option to run an algorithm without passing data to it using the
CSV wrapper (PR#465 [https://github.com/vantage6/vantage6/pull/465])

	In the UI, when users are about to create a task, they will now be shown
which nodes relevant to the task are offline
(PR#97 [https://github.com/vantage6/vantage6-UI/pull/97],
Issue#96 [https://github.com/vantage6/vantage6-UI/issues/96]).

	Change

	The docker dependency is updated, so that docker.pull() now pulls
the default tag if no tag is specified, instead of all tags
(PR#481 [https://github.com/vantage6/vantage6/pull/481],
Issue#473 [https://github.com/vantage6/vantage6/issues/473]).

	If a node cannot authenticate to the server because the server cannot be
found, the user now gets a clearer error message(PR#480 [https://github.com/vantage6/vantage6/pull/480],
Issue#460 [https://github.com/vantage6/vantage6/issues/460]).

	The default role ‘Organization admin’ has been updated: it now allows to
create nodes for their own organization
(PR#489 [https://github.com/vantage6/vantage6/pull/489]).

	The release pipeline has been updated to 1) release to PyPi as last step (
since that is irreversible), 2) create release branches, 3) improve the
check on the version tag, and 4) update some soon-to-be-deprecated commands
(PR#488 [https://github.com/vantage6/vantage6/pull/488].

	Not all nodes are alerted any more when a node comes online
(PR#490 [https://github.com/vantage6/vantage6/pull/490]).

	Added instructions to the UI on how to report bugs
(PR#100 [https://github.com/vantage6/vantage6-UI/pull/100],
Issue#57 [https://github.com/vantage6/vantage6-UI/issues/57]).

	Bugfix

	Newer images were not automatically pulled from harbor on node or server
startup. This has been fixed (PR#482 [https://github.com/vantage6/vantage6/pull/482],
Issue#471 [https://github.com/vantage6/vantage6/issues/471]).

3.6.1

12 january 2023

	Feature

	Algorithm containers can be killed from the client. This can be done
for a specific task or it possible to kill all tasks running at a specific
node (PR#417 [https://github.com/vantage6/vantage6/pull/417],
Issue#167 [https://github.com/vantage6/vantage6/issues/167]).

	Added a status field for an algorithm, that tracks if an algorithm has
yet to start, is started, has finished, or has failed. In the latter case,
it also indicates how/when the algorithm failed
(PR#417 [https://github.com/vantage6/vantage6/pull/417]).

	The UI has been connected to the socket, and gives messages about node
and task status changes (UI PR#84 [https://github.com/vantage6/vantage6-UI/pull/84],
UI Issue #73 [https://github.com/vantage6/vantage6-UI/issues/73]). There
are also new permissions for socket events on the server to authorize users
to see events from their (or all) collaborations
(PR#417 [https://github.com/vantage6/vantage6/pull/417]).

	It is now possible to create tasks in the UI (UI version >3.6.0). Note that
all tasks are then JSON serialized and you will not be able to run tasks
in an encrypted collaboration (as that would require uploading a private
key to a browser) (PR#90).

Warning

If you want to run the UI Docker image, note that from this version
onwards, you have to define the SERVER_URL and API_PATH
environment variables (compared to just a API_URL before).

	There is a new multi-database wrapper that will forward a dictionary of all
node databases and their paths to the algorithm. This allows you to use
multiple databases in a single algorithm easily.
(PR#424 [https://github.com/vantage6/vantage6/pull/424],
Issue #398 [https://github.com/vantage6/vantage6/issues/398]).

	New rules are now assigned automatically to the default root role. This
ensures that rules that are added in a new version are assigned to system
administrators, instead of them having to change the database
(PR#456 [https://github.com/vantage6/vantage6/pull/456],
Issue #442 [https://github.com/vantage6/vantage6/issues/442]).

	There is a new command vnode set-api-key that facilitates putting your
API key into the node configuration file (PR#428 [https://github.com/vantage6/vantage6/pull/418],
Issue #259 [https://github.com/vantage6/vantage6/issues/259]).

	Logging in the Python client has been improved: instead of all or nothing,
log level is now settable to one of debug, info, warn, error, critical
(PR#453 [https://github.com/vantage6/vantage6/pull/453],
Issue #340 [https://github.com/vantage6/vantage6/issues/340]).

	When there is an error in the VPN server configuration, the user receives
clearer error messages than before (PR#444 [https://github.com/vantage6/vantage6/pull/444],
Issue #278 [https://github.com/vantage6/vantage6/issues/278]).

	Change

	The node status (online/offline) is now checked periodically over the socket
connection via a ping/pong construction. This is an improvement over the
older version where a node’s status was changed only when it connected or
disconnected (PR#450 [https://github.com/vantage6/vantage6/pull/450],
Issue #40 [https://github.com/vantage6/vantage6/issues/40]).

Warning

If a server upgrades to 3.6.1, the nodes should also be upgraded.
Otherwise, the node status will be incorrect and the logs will show
errors periodically with each attempted ping/pong.

	It is no longer possible for any user to change the username of another
user, as this would be confusing for that user when logging in
(PR#433 [https://github.com/vantage6/vantage6/pull/433],
Issue #396 [https://github.com/vantage6/vantage6/issues/396]).

	The server has shorter log messages when someone calls a non-existing route.
The resulting 404 exception is no longer logged (PR#452 [https://github.com/vantage6/vantage6/pull/452],
Issue #393 [https://github.com/vantage6/vantage6/issues/393]).

	Removed old, unused scripts to start a node
(PR#464 [https://github.com/vantage6/vantage6/pull/464]).

	Bugfix

	Node was unable to pull images from Docker Hub; this has been corrected.
(PR#432 [https://github.com/vantage6/vantage6/pull/432],
Issue#422 [https://github.com/vantage6/vantage6/issues/422]).

	File-based database extensions were always converted to .csv when they
were mounted to a node. Now, files keep their original file extensions
(PR#426 [https://github.com/vantage6/vantage6/pull/426],
Issue #397 [https://github.com/vantage6/vantage6/issues/397]).

	When a node configuration defined a wrong VPN subnet, the VPN connection
didn’t work but this was not detected until VPN was used. Now, the user is
alerted immediately and VPN is turned off
(PR#444 [https://github.com/vantage6/vantage6/pull/444]).

	If a user tries to write a node or server config file to a non-existing
directory, they are now getting a clear error message instead of an
incorrect one (PR#455 [https://github.com/vantage6/vantage6/pull/455],
Issue #1 [https://github.com/vantage6/vantage6/issues/1])

	There was a circular import in the infrastructure code, which has now been
resolved (PR#451 [https://github.com/vantage6/vantage6/pull/451],
Issue #53 [https://github.com/vantage6/vantage6/issues/53]).

	In PATCH /user, it was not possible to set some fields (e.g.
firstname) to an empty string if there was a value before.
(PR#439 [https://github.com/vantage6/vantage6/pull/439],
Issue #334 [https://github.com/vantage6/vantage6/issues/334]).

Note

Release 3.6.0 was skipped due to an issue in the release process.

3.5.2

30 november 2022

	Bugfix

	Fix for automatic addition of column. This failed in some SQL
dialects because reserved keywords (i.e. ‘user’ for PostgresQL) were
not escaped
(PR#415 [https://github.com/vantage6/vantage6/pull/415])

	Correct installation order for uWSGI in node and server docker file
(PR#414 [https://github.com/vantage6/vantage6/pull/414])

3.5.1

30 november 2022

	Bugfix

	Backwards compatibility for which organization initiated a task
between v3.0-3.4 and v3.5
(PR#412 [https://github.com/vantage6/vantage6/pull/413])

	Fixed VPN client container. Entry script was not executable in Github
pipelines
(PR#413 [https://github.com/vantage6/vantage6/pull/413])

3.5.0

30 november 2022

Warning

When upgrading to 3.5.0, you might need to add the otp_secret column to
the user table manually in the database. This may be avoided by upgrading
to 3.5.2.

	Feature

	Multi-factor authentication via TOTP has been added. Admins can enforce
that all users enable MFA
(PR#376 [https://github.com/vantage6/vantage6/pull/376],
Issue#355 [https://github.com/vantage6/vantage6/issues/355]).

	You can now request all tasks assigned by a given user
(PR#326 [https://github.com/vantage6/vantage6/pull/326],
Issue#43 [https://github.com/vantage6/vantage6/issues/43]).

	The server support email is now settable in the configuration
file, used to be fixed at support@vantage6.ai
(PR#330 [https://github.com/vantage6/vantage6/pull/330],
Issue#319 [https://github.com/vantage6/vantage6/issues/319]).

	When pickles are used, more task info is shown in the node logs
(PR#366 [https://github.com/vantage6/vantage6/pull/366],
Issue#171 [https://github.com/vantage6/vantage6/issues/171]).

	Change

	The harbor2.vantag6.ai/infrastructure/algorithm-base:[TAG] is
tagged with the vantage6-client version that is already in the
image (PR#389 [https://github.com/vantage6/vantage6/pull/389],
Issue#233 [https://github.com/vantage6/vantage6/issues/233]).

	The infrastructure base image has been updated to improve build
time (PR#406 [https://github.com/vantage6/vantage6/pull/406],
Issue#250 [https://github.com/vantage6/vantage6/issues/250]).

3.4.2

3 november 2022

	Bugfix

	Fixed a bug in the local proxy server which made algorithm containers crash
in case the client.create_new_task method was used
(PR#382 [https://github.com/vantage6/vantage6/pull/382]).

	Fixed a bug where the node crashed when a non existing image was sent in a
task (PR#375 [https://github.com/vantage6/vantage6/pull/375]).

3.4.0 & 3.4.1

25 oktober 2022

	Feature

	Add columns to the SQL database on startup
(PR#365 [https://github.com/vantage6/vantage6/pull/365],
ISSUE#364 [https://github.com/vantage6/vantage6/issues/364]).
This simpifies the upgrading proces when a new column is added in
the new release, as you do no longer need to manually add columns.
When downgrading the columns will not be deleted.

	Docker wrapper for Parquet files
(PR#361 [https://github.com/vantage6/vantage6/pull/361],
ISSUE#337 [https://github.com/vantage6/vantage6/issues/337]).
Parquet provides a way to store tabular data with the datatypes
included which is an advantage over CSV.

	When the node starts, or when the client is verbose initialized a
banner to cite the vantage6 project is added
(PR#359 [https://github.com/vantage6/vantage6/pull/359],
ISSUE#356 [https://github.com/vantage6/vantage6/issues/356]).

	In the client a waiting for results method is added
(PR#325 [https://github.com/vantage6/vantage6/pull/325],
ISSUE#8 [https://github.com/vantage6/vantage6/issues/8]).
Which allows you to automatically poll for results by using
client.wait_for_results(...), for more info see
help(client.wait_for_results).

	Added Github releases
(PR#358 [https://github.com/vantage6/vantage6/pull/358],
ISSUE#357 [https://github.com/vantage6/vantage6/issues/357]).

	Added option to filter GET /role by user id in the Python client
(PR#328 [https://github.com/vantage6/vantage6/pull/328],
ISSUE#213 [https://github.com/vantage6/vantage6/issues/213]).
E.g.: client.role.list(user=...).

	In release process, build and release images for both ARM and x86
architecture.

	Change

	Unused code removed from the Makefile
(PR#324 [https://github.com/vantage6/vantage6/issues/357],
ISSUE#284 [https://github.com/vantage6/vantage6/issues/284]).

	Pandas version is frozen to version 1.3.5
(PR#363 [https://github.com/vantage6/vantage6/pull/363] ,
ISSUE#266 [https://github.com/vantage6/vantage6/issues/266]).

	Bugfix

	Improve checks for non-existing resources in unittests
(PR#320 [https://github.com/vantage6/vantage6/pull/320],
ISSUE#265 [https://github.com/vantage6/vantage6/issues/265]).
Flask did not support negative ints, so the tests passed due to
another 404 response.

	client.node.list does no longer filter by offline nodes
(PR#321 [https://github.com/vantage6/vantage6/pull/321],
ISSUE#279 [https://github.com/vantage6/vantage6/issues/279]).

Note

3.4.1 is a rebuild from 3.4.0 in which the all dependencies are fixed, as
the build led to a broken server image.

3.3.7

	Bugfix

	The function client.util.change_my_password() was updated
(Issue #333 [https://github.com/vantage6/vantage6/issues/333])

3.3.6

	Bugfix

	Temporary fix for a bug that prevents the master container from
creating tasks in an encrypted collaboration. This temporary fix
disables the parallel encryption module in the local proxy. This
functionality will be restored in a future release.

Note

This version is also the first version where the User Interface is available
in the right version. From this point onwards, the user interface changes
will also be part of the release notes.

3.3.5

	Feature

	The release pipeline has been expanded to automatically push new
Docker images of node/server to the harbor2 service.

	Bugfix

	The VPN IP address for a node was not saved by the server using
the PATCH /node endpoint, while this functionality is required
to use the VPN

Note

Note that 3.3.4 was only released on PyPi and that version is identical
to 3.3.5. That version was otherwise skipped due to a temporary mistake
in the release pipeline.

3.3.3

	Bugfix

	Token refresh was broken for both users and nodes.
(Issue#306 [https://github.com/vantage6/vantage6/issues/306],
PR#307 [https://github.com/vantage6/vantage6/pull/307])

	Local proxy encrpytion was broken. This prefented algorithms from
creating sub tasks when encryption was enabled.
(Issue#305 [https://github.com/vantage6/vantage6/issues/305],
PR#308 [https://github.com/vantage6/vantage6/pull/308])

3.3.2

	Bugfix

	vpn_client_image and network_config_image are settable
through the node configuration file.
(PR#301 [https://github.com/vantage6/vantage6/pull/301],
Issue#294 [https://github.com/vantage6/vantage6/issues/294])

	The option --all from vnode stop did not stop the node
gracefully. This has been fixed. It is possible to force the nodes
to quit by using the --force flag.
(PR#300 [https://github.com/vantage6/vantage6/pull/300],
Issue#298 [https://github.com/vantage6/vantage6/issues/298])

	Nodes using a slow internet connection (high ping) had issues with
connecting to the websocket channel.
(PR#299 [https://github.com/vantage6/vantage6/pull/299],
Issue#297 [https://github.com/vantage6/vantage6/issues/297])

3.3.1

	Bugfix

	Fixed faulty error status codes from the /collaboration
endpoint
(PR#287 [https://github.com/vantage6/vantage6/pull/287]).

	Default roles are always returned from the /role endpoint.
This fixes the error when a user was assigned a default role but
could not reach anything (as it could not view its own role)
(PR#286 [https://github.com/vantage6/vantage6/pull/286]).

	Performance upgrade in the /organization endpoint. This caused
long delays when retrieving organization information when the
organization has many tasks
(PR#288 [https://github.com/vantage6/vantage6/pull/288]).

	Organization admins are no longer allowed to create and delete
nodes as these should be managed at collaboration level.
Therefore, the collaboration admin rules have been extended to
include create and delete nodes rules
(PR#289 [https://github.com/vantage6/vantage6/pull/289]).

	Fixed some issues that made 3.3.0 incompatible with 3.3.1
(Issue#285 [https://github.com/vantage6/vantage6/issues/285]).

3.3.0

	Feature

	Login requirements have been updated. Passwords are now required
to have sufficient complexity (8+ characters, and at least 1
uppercase, 1 lowercase, 1 digit, 1 special character). Also, after
5 failed login attempts, a user account is blocked for 15 minutes
(these defaults can be changed in a server config file).

	Added endpoint /password/change to allow users to change their
password using their current password as authentication. It is no
longer possible to change passwords via client.user.update()
or via a PATCH /user/{id} request.

	Added the default roles ‘viewer’, ‘researcher’, ‘organization
admin’ and ‘collaboration admin’ to newly created servers. These
roles may be assigned to users of any organization, and should
help users with proper permission assignment.

	Added option to filter get all roles for a specific user id in the
GET /role endpoint.

	RabbitMQ has support for multiple servers when using
vserver start. It already had support for multiple servers
when deploying via a Docker compose file.

	When exiting server logs or node logs with Ctrl+C, there is now an
additional message alerting the user that the server/node is still
running in the background and how they may stop them.

	Change

	Node proxy server has been updated

	Updated PyJWT and related dependencies for improved JWT security.

	When nodes are trying to use a wrong API key to authenticate, they
now receive a clear message in the node logs and the node exits
immediately.

	When using vserver import, API keys must now be provided for
the nodes you create.

	Moved all swagger API docs from YAML files into the code. Also,
corrected errors in them.

	API keys are created with UUID4 instead of UUID1. This prevents
that UUIDs created milliseconds apart are not too similar.

	Rules for users to edit tasks were never used and have therefore
been deleted.

	Bugfix

	In the Python client, client.organization.list() now shows
pagination metadata by default, which is consistent all other
list() statements.

	When not providing an API key in vnode new, there used to be
an unclear error message. Now, we allow specifying an API key
later and provide a clearer error message for any other keys with
inadequate values.

	It is now possible to provide a name when creating a name, both
via the Python client as via the server.

	A GET /role request crashed if parameter organization_id
was defined but not include_root. This has been resolved.

	Users received an ‘unexpected error’ when performing a GET
/collaboration?organization_id=<id> request and they didn’t
have global collaboration view permission. This was fixed.

	GET /role/<id> didn’t give an error if a role didn’t exist.
Now it does.

3.2.0

	Feature

	Horizontal scaling for the vantage6-server instance by adding
support for RabbitMQ.

	It is now possible to connect other docker containers to the
private algorithm network. This enables you to attach services to
the algorithm network using the docker_services setting.

	Many additional select and filter options on API endpoints, see
swagger docs endpoint (/apidocs). The new options have also
been added to the Python client.

	Users are now always able to view their own data

	Usernames can be changed though the API

	Bugfix

	(Confusing) SQL errors are no longer returned from the API.

	Clearer error message when an organization has multiple nodes for
a single collaboration.

	Node no longer tries to connect to the VPN if it has no
vpn_subnet setting in its configuration file.

	Fix the VPN configuration file renewal

	Superusers are no longer able to post tasks to collaborations its
organization does not participate in. Note that superusers were
never able to view the results of such tasks.

	It is no longer possible to post tasks to organization which do
not have a registered node attach to the collaboration.

	The vnode create-private-key command no longer crashes if the
ssh directory does not exist.

	The client no longer logs the password

	The version of the alpine docker image (that is used to set up
algorithm runs with VPN) was fixed. This prevents that many
versions of this image are downloaded by the node.

	Improved reading of username and password from docker registry,
which can be capitalized differently depending on the docker
version.

	Fix error with multiple-database feature, where default is now
used if specific database is not found

3.1.0

	Feature

	Algorithm-to-algorithm communication can now take place over
multiple ports, which the algorithm developer can specify in the
Dockerfile. Labels can be assigned to each port, facilitating
communication over multiple channels.

	Multi-database support for nodes. It is now also possible to
assign multiple data sources to a single node in Petronas; this
was already available in Harukas 2.2.0. The user can request a
specific data source by supplying the database argument when
creating a task.

	The CLI commands vserver new and vnode new have been
extended to facilitate configuration of the VPN server.

	Filter options for the client have been extended.

	Roles can no longer be used across organizations (except for roles
in the default organization)

	Added vnode remove command to uninstall a node. The command
removes the resources attached to a node installation
(configuration files, log files, docker volumes etc).

	Added option to specify configuration file path when running
vnode create-private-key.

	Bugfix

	Fixed swagger docs

	Improved error message if docker is not running when a node is
started

	Improved error message for vserver version and
vnode version if no servers or nodes are running

	Patching user failed if users had zero roles - this has been
fixed.

	Creating roles was not possible for a user who had permission to
create roles only for their own organization - this has been
corrected.

3.0.0

	Feature

	Direct algorithm-to-algorithm communication has been added. Via a
VPN connection, algorithms can exchange information with one
another.

	Pagination is added. Metadata is provided in the headers by
default. It is also possible to include them in the output body by
supplying an additional parameterinclude=metadata.
Parameters page and per_page can be used to paginate. The
following endpoints are enabled:

	GET /result

	GET /collaboration

	GET /collaboration/{id}/organization

	GET /collaboration/{id}/node

	GET /collaboration/{id}/task

	GET /organization

	GET /role

	GET /role/{id}/rule

	GET /rule

	GET /task

	GET /task/{id}/result

	GET /node

	API keys are encrypted in the database

	Users cannot shrink their own permissions by accident

	Give node permission to update public key

	Dependency updates

	Bugfix

	Fixed database connection issues

	Don’t allow users to be assigned to non-existing organizations by
root

	Fix node status when node is stopped and immediately started up

	Check if node names are allowed docker names

2.3.0 - 2.3.4

	Feature

	Allows for horizontal scaling of the server instance by adding
support for RabbitMQ. Note that this has not been released for
version 3(!)

	Bugfix

	Performance improvements on the /organization endpoint

2.2.0

	Feature

	Multi-database support for nodes. It is now possible to assign
multiple data sources to a single node. The user can request a
specific data source by supplying the database argument when
creating a task.

	The mailserver now supports TLS and SSL options

	Bugfix

	Nodes are now disconnected more gracefully. This fixes the issue
that nodes appear offline while they are in fact online

	Fixed a bug that prevented deleting a node from the collaboration

	A role is now allowed to have zero rules

	Some http error messages have improved

	Organization fields can now be set to an empty string

2.1.2 & 2.1.3

	Bugfix

	Changes to the way the application interacts with the database.
Solves the issue of unexpected disconnects from the DB and thereby
freezing the application.

2.1.1

	Bugfix

	Updating the country field in an organization works again\

	The client.result.list(...) broke when it was not able to
deserialize one of the in- or outputs.

2.1.0

	Feature

	Custom algorithm environment variables can be set using the
algorithm_env key in the configuration file. See this Github
issue [https://github.com/IKNL/vantage6-node/issues/32].

	Support for non-file-based databases on the node. See this Github
issue [https://github.com/IKNL/vantage6/issues/66].

	Added flag --attach to the vserver start and
vnode start command. This directly attaches the log to the
console.

	Auto updating the node and server instance is now limited to the
major version. See this Github
issue [https://github.com/IKNL/vantage6/issues/65].

	e.g. if you’ve installed the Trolltunga version of the CLI you
will always get the Trolltunga version of the node and server.

	Infrastructure images are now tagged using their version major.
(e.g. trolltunga or harukas)

	It is still possible to use intermediate versions by specifying
the --image option when starting the node or server.
(e.g. vserver start --image harbor.vantage6.ai/infrastructure/server:2.0.0.post1
)

	Bugfix

	Fixed issue where node crashed if the database did not exist on
startup. See this Github
issue [https://github.com/IKNL/vantage6/issues/67].

2.0.0.post1

	Bugfix

	Fixed a bug that prevented the usage of secured registry
algorithms

2.0.0

	Feature

	Role/rule based access control

	Roles consist of a bundle of rules. Rules profided access to
certain API endpoints at the server.

	By default 3 roles are created: 1) Container, 2) Node, 3) Root.
The root role is assigned to the root user on the first run.
The root user can assign rules and roles from there.

	Major update on the python-client. The client also contains
management tools for the server (i.e. to creating users,
organizations and managing permissions. The client can be imported
from from vantage6.client import Client .

	You can use the agrument verbose on the client to output
status messages. This is usefull for example when working with
Jupyter notebooks.

	Added CLI vserver version , vnode version ,
vserver-local version and vnode-local version commands to
report the version of the node or server they are running

	The logging contains more information about the current setup, and
refers to this documentation and our Discourd channel

	Bugfix

	Issue with the DB connection. Session management is updated. Error
still occurs from time to time but can be reset by using the
endpoint /health/fix . This will be patched in a newer
version.

1.2.3

	Feature

	The node is now compatible with the Harbor v2.0 API

1.2.2

	Bug fixes

	Fixed a bug that ignored the --system flag from
vnode start

	Logging output muted when the --config option is used in
vnode start

	Fixed config folder mounting point when the option --config
option is used in vnode start

1.2.1

	Bug fixes

	starting the server for the first time resulted in a crash as the
root user was not supplied with an email address.

	Algorithm containers could still access the internet through their
host. This has been patched.

1.2.0

	Features

	Cross language serialization. Enabling algorithm developers to
write algorithms that are not language dependent.

	Reset password is added to the API. For this purpose two endpoints
have been added: /recover/lostand recover/reset . The
server config file needs to extended to be connected to a
mail-server in order to make this work.

	User table in the database is extended to contain an email address
which is mandatory.

	Bug fixes

	Collaboration name needs to be unique

	API consistency and bug fixes:

	GET organization was missing domain key

	PATCH /organization could not patch domain

	GET /collaboration/{id}/node has been made consistent with
/node

	GET /collaboration/{id}/organization has been made
consistent with /organization

	PATCH /user root-user was not able to update users

	DELETE /user root-user was not able to delete users

	GET /task null values are now consistent: [] is
replaced by null

	POST, PATCH, DELETE /node root-user was not able to perform
these actions

	GET /node/{id}/task output is made consistent with the

	other

	questionairy dependency is updated to 1.5.2

	vantage6-toolkit repository has been merged with the
vantage6-client as they were very tight coupled.

1.1.0

	Features

	new command vnode clean to clean up temporary docker volumes
that are no longer used

	Version of the individual packages are printed in the console on
startup

	Custom task and log directories can be set in the configuration
file

	Improved CLI messages

	Docker images are only pulled if the remote version is newer. This
applies both to the node/server image and the algorithm images

	Client class names have been simplified (UserClientProtocol ->
Client)

	Bug fixes

	Removed defective websocket watchdog. There still might be
disconnection issues from time to time.

1.0.0

	Updated Command Line Interface (CLI)

	The commands vnode list , vnode start and the new
commandvnode attach are aimed to work with multiple nodes at
a single machine.

	System and user-directories can be used to store configurations by
using the --user/--system options. The node stores them by
default at user level, and the server at system level.

	Current status (online/offline) of the nodes can be seen using
vnode list , which also reports which environments are
available per configuration.

	Developer container has been added which can inject the container
with the source. vnode start --develop [source]. Note that
this Docker image needs to be build in advance from the
development.Dockerfile and tag devcon.

	vnode config_file has been replaced by vnode files which
not only outputs the config file location but also the database
and log file location.

	New database model

	Improved relations between models, and with that, an update of the Python
API.

	Input for the tasks is now stored in the result table. This was
required as the input is encrypted individually for each
organization (end-to-end encryption (E2EE) between organizations).

	The Organization model has been extended with the
public_key (String) field. This field contains the public key
from each organization, which is used by the E2EE module.

	The Collaboration model has been extended with the
encrypted (Boolean) field which keeps track if all messages
(tasks, results) need to be E2EE for this specific collaboration.

	The Task keeps track of the initiator (organization) of the
organization. This is required to encrypt the results for the
initiator.

	End to end encryption

	All messages between all organizations are by default be
encrypted.

	Each node requires the private key of the organization as it needs
to be able to decrypt incoming messages. The private key should be
specified in the configuration file using the private_key
label.

	In case no private key is specified, the node generates a new key
an uploads the public key to the server.

	If a node starts (using vnode start), it always checks if the
public_key on the server matches the private key the node is
currently using.

	In case your organization has multiple nodes running they should
all point to the same private key.

	Users have to encrypt the input and decrypt the output, which can
be simplified by using our client vantage6.client.Client __
for Python __ or vtg::Client __ for R.

	Algorithms are not concerned about encryption as this is handled
at node level.

	Algorithm container isolation

	Containers have no longer an internet connection, but are
connected to a private docker network.

	Master containers can access the central server through a local
proxy server which is both connected to the private docker network
as the outside world. This proxy server also takes care of the
encryption of the messages from the algorithms for the intended
receiving organization.

	In case a single machine hosts multiple nodes, each node is
attached to its own private Docker network.

	Temporary Volumes

	Each algorithm mounts temporary volume, which is linked to the
node and the run_id of the task

	The mounting target is specified in an environment variable
TEMPORARY_FOLDER. The algorithm can write anything to this
directory.

	These volumes need to be cleaned manually.
(docker rm VOLUME_NAME)

	Successive algorithms only have access to the volume if they share
the same run_id . Each time a user creates a task, a new
run_id is issued. If you need to share information between
containers, you need to do this through a master container. If a
master container creates a task, all slave tasks will obtain the
same run_id.

	RESTful API

	
	All RESTful API output is HATEOS formatted.
	(wiki [https://en.wikipedia.org/wiki/HATEOAS])

	Local Proxy Server

	Algorithm containers no longer receive an internet connection.
They can only communicate with the central server through a local
proxy service.

	It handles encryption for certain endpoints (i.e. /task, the
input or /result the results)

	Dockerized the Node

	All node code is run from a Docker container. Build versions can
be found at our Docker repository:
harbor.distributedlearning.ai/infrastructure/node . Specific
version can be pulled using tags.

	For each running node, a Docker volume is created in which the
data, input and output is stored. The name of the Docker volume
is: vantage-NODE_NAME-vol . This volume is shared with all
incoming algorithm containers.

	Each node is attached to the public network and a private network:
vantage-NODE_NAME-net.

 Partners

Partners

Our community is open to everyone. The following people and organizations made
a significant contribution to the design and implementation of vantage6.

[image: IKNL logo]

	Anja van Gestel

	Bart van Beusekom

	Frank Martin

	Hasan Alradhi

	Melle Sieswerda

	Gijs Geleijnse

[image: eScience center logo]

	Djura Smits

	Lourens Veen

[image: eScience center logo]

	Johan van Soest

Would you like to contribute? Check out
how to contribute! Find and chat with us via the
Discord [https://discord.gg/yAyFf6Y] chat!

 Python Module Index

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vantage6	

 	
 	
 vantage6.server	

 	
 	
 vantage6.server.model.base	

 	
 	
 vantage6.server.model.member	

 	
 	
 vantage6.server.model.permission	

 	
 	
 vantage6.server.model.role_rule_association	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add() (RuleCollection method)

 	add_col_to_table() (Database method)

 	add_missing_columns() (Database method)

 	AlgorithmPort (class in vantage6.server.model.algorithm_port)

 	appender() (PermissionManager method)

 	
 	assign_rule_to_container() (PermissionManager method)

 	assign_rule_to_fixed_role() (PermissionManager static method)

 	assign_rule_to_node() (PermissionManager method)

 	assign_rule_to_root() (PermissionManager method)

 	Authenticatable (class in vantage6.server.model.authenticatable)

 	available_configurations() (NodeContext class method)

C

 	
 	can() (User method)

 	check_key() (Node method)

 	check_password() (User method)

 	clear_data() (Database method)

 	clear_session() (DatabaseSessionManager static method)

 	close() (Database method)

 	Collaboration (class in vantage6.server.model.collaboration)

 	COLLABORATION (Scope attribute)

 	
 	collection() (PermissionManager method)

 	complete (Result attribute)

 	config_exists() (NodeContext class method)

 	configure_api() (ServerApp method)

 	configure_flask() (ServerApp method)

 	configure_jwt() (ServerApp method)

 	configure_logging() (ServerApp static method)

 	connect() (Database method)

 	CREATE (Operation attribute)

D

 	
 	Database (class in vantage6.server.model.base)

 	databases (NodeContext property)

 	DatabaseSessionManager (class in vantage6.server.model.base)

 	DefaultSocketNamespace (class in vantage6.server.websockets)

 	DELETE (Operation attribute)

 	delete() (ModelBase method)

 	
 	docker_container_name (NodeContext property)

 	docker_network_name (NodeContext property)

 	docker_ssh_volume_name (NodeContext property)

 	docker_temporary_volume_name() (NodeContext method)

 	docker_volume_name (NodeContext property)

 	docker_vpn_volume_name (NodeContext property)

 	drop_all() (Database method)

E

 	
 	EDIT (Operation attribute)

 	
 	exists() (Node class method)

 	(User class method)

F

 	
 	find_by_name() (Collaboration class method)

 	
 	from_external_config_file() (NodeContext class method)

G

 	
 	get() (ModelBase class method)

 	get_by_() (Rule class method)

 	get_by_api_key() (Node class method)

 	get_by_email() (User class method)

 	get_by_name() (Organization class method)

 	(Role class method)

 	get_by_username() (User class method)

 	get_database_uri() (NodeContext method)

 	get_default_roles() (in module vantage6.server.default_roles)

 	
 	get_node_from_organization() (Collaboration method)

 	get_nodes_from_organizations() (Collaboration method)

 	get_non_existing_columns() (Database method)

 	get_online_nodes() (Node class method)

 	get_organization_ids() (Collaboration method)

 	get_result_ids() (Organization method)

 	get_session() (DatabaseSessionManager static method)

 	get_task_ids() (Collaboration method)

 	GLOBAL (Scope attribute)

H

 	
 	hash() (Authenticatable static method)

 	
 	help() (ModelBase class method)

I

 	
 	in_flask_request() (DatabaseSessionManager static method)

 	INST_CONFIG_MANAGER (NodeContext attribute)

 	
 	is_blocked() (User method)

 	is_column_missing() (Database static method)

L

 	
 	load_resources() (ServerApp method)

 	
 	load_rules_from_resources() (PermissionManager method)

M

 	
 	MailService (class in vantage6.server.mail_service)

 	Member (in module vantage6.server.model.member)

 	ModelBase (class in vantage6.server.model.base)

 	
 module

 	vantage6.server

 	vantage6.server.model.base

 	vantage6.server.model.member

 	vantage6.server.model.permission

 	vantage6.server.model.role_rule_association

N

 	
 	name_exists() (Collaboration class method)

 	new_session() (DatabaseSessionManager static method)

 	next_run_id() (Task class method)

 	
 	Node (class in vantage6.server.model.node)

 	node (Result property)

 	NodeContext (class in vantage6.cli.context)

O

 	
 	on_algorithm_status_change() (DefaultSocketNamespace method)

 	on_connect() (DefaultSocketNamespace method)

 	on_disconnect() (DefaultSocketNamespace method)

 	on_error() (DefaultSocketNamespace method)

 	on_message() (DefaultSocketNamespace method)

 	
 	on_node_info_update() (DefaultSocketNamespace method)

 	Operation (class in vantage6.server.model.rule)

 	Organization (class in vantage6.server.model.organization)

 	ORGANIZATION (Scope attribute)

 	OWN (Scope attribute)

P

 	
 	Permission (in module vantage6.server.model.permission)

 	
 	PermissionManager (class in vantage6.server.permission)

 	public_key (Organization attribute)

R

 	
 	register_rule() (PermissionManager method)

 	Result (class in vantage6.server.model.result)

 	results_for_node() (Task method)

 	Role (class in vantage6.server.model.role)

 	role_rule_association (in module vantage6.server.model.role_rule_association)

 	
 	Rule (class in vantage6.server.model.rule)

 	rule_exists_in_db() (PermissionManager static method)

 	RuleCollection (class in vantage6.server.permission)

 	run_dev_server() (in module vantage6.server)

 	run_server() (in module vantage6.server)

S

 	
 	save() (ModelBase method)

 	Scope (class in vantage6.server.model.rule)

 	send_email() (MailService method)

 	
 	ServerApp (class in vantage6.server)

 	set_password() (User method)

 	start() (ServerApp method)

T

 	
 	Task (class in vantage6.server.model.task)

 	
 	type_data_folder() (NodeContext static method)

U

 	
 	User (class in vantage6.server.model.user)

 	
 	username_exists() (User class method)

 	UserPermission (in module vantage6.server.model.permission)

V

 	
 	
 vantage6.server

 	module

 	
 vantage6.server.model.base

 	module

 	
 vantage6.server.model.member

 	module

 	
 	
 vantage6.server.model.permission

 	module

 	
 vantage6.server.model.role_rule_association

 	module

 	verify_user_rules() (PermissionManager static method)

 	VIEW (Operation attribute)

 Python

 The (minimal) requirements of the node and server are
similar. Note that these are recommendations: it may also work on other
hardware, operating systems, versions of Python etc. (but they are not tested
as much).

Hardware

	x86 CPU architecture + virtualization enabled

	1 GB memory

	50GB+ storage

	Stable and fast (1 Mbps+ internet connection)

	Public IP address

Software

	Operating system:
- Ubuntu 18.04+
- MacOS Big Sur+ (only for node)
- Windows 10+ (only for node)

	Python

	Docker

Note

For the server, Ubuntu is highly recommended. It is possible to run a
development server (using vserver start) on Windows or MacOS, but for
production purposes we recommend using Ubuntu.

Warning

The hardware requirements of the node also depend on the algorithms that
the node will run. For example, you need much less compute power for a
descriptive statistical algorithm than for a machine learning model.

Python

Installation of any of the vantage6 packages requires Python 3.10.
For installation instructions, see python.org [https://python.org],
anaconda.com [https://anaconda.com] or use the package manager
native to your OS and/or distribution.

Note

We recommend you install vantage6 in a new, clean Python (Conda)
environment.

Higher versions of Python (3.11+) will most likely also work, as might lower
versions (3.8 or 3.9). However, we develop and test vantage6 on version
3.10, so that is the safest choice.

Warning

Note that Python 3.10 is only used in vantage6 versions 3.8.0 and higher.
In lower versions, Python 3.7 is required.

Docker

Docker facilitates encapsulation of applications and their dependencies
in packages that can be easily distributed to diverse systems.
Algorithms are stored in Docker images which nodes can download and
execute. Besides the algorithms, both the node and server are also
running from a docker container themselves.

Please refer to this page [https://docs.docker.com/engine/install/]
on how to install Docker. To verify that Docker is installed and running
you can run the hello-world example from Docker.

docker run hello-world

Warning

Note that for Linux, some post-installation
steps [https://docs.docker.com/engine/install/linux-postinstall/] may
be required. Vantage6 needs to be able to run docker without sudo,
and these steps ensure just that.

Note

	Always make sure that Docker is running while using vantage6!

	We recommend to always use the latest version of Docker.

_images/horizontal_partition.png
O O A ©O

O
—

©)
[

R
R

_images/iknl-logo.jpg
integraal
K N L kankercentrum
Nederland

_images/encryption.png
private k

Organization A

o\

uonediunwwod paydAious

Re Organization B

O

-

‘ . .
O{x*7) Organization C

L O

O

-

B*D(g] Organization D

_images/escience-center-logo.png
netheriands

:center

_images/screenshot_ui.png
VANTAGE

A Home
s Organization

6 Collaborations

B Roles

Users
{3 Nodes
A Tasks

%

J

Select organization to view:

Logout

@ New organization

IKNL

Zemikestraat
Eindhoven
Holanda
knlnl

Dowinload public key

Edit

Collaborations

collab_name

New collaboration

Users
Bananaa Platanomana s you! v
Froli Fresa v
Jesus Manzane v
Alexis Pina v
Juan Jelapeno v

View all users

‘supemode (oniine) | IKNL-allcola Node (offne) | - org 2_collab Node (offine)

al_collabb v

Nodes
org_2_collab v
important proje v

Roles
superrole v
something v
org_admin v
Root Tris is o defauit role v

_images/server-architecture.png
Server Do.cker RESTful API
o8 registry (Docker)

r
1
i
1
i
1
i
i
Researcher :]
: Command line
H interface
H Central
E server
| Conf. g
H —
! files | =—
e S, RESTful API WebSocket

_images/maastro-logo.png
Maastro

_images/rules-overview.png
Resource

User

Organization

Collaboration

Role

Node

Task

Result

Port

Scope Operation
own View | Edit | Delete
Organization View | Create | Edit | Delete
Global View | Create | Edit | Delete
Organization View | Edit

Collaboration View

Global View | Create | Edit
Organization View

Global View | Create | Edit | Delete
Organization View | Create | Edit | Delete
Global View | Create | Edit | Delete
Organization View | Create | Edit | Delete
Global View | Create | Edit | Delete
Organization View | Create | Edit | Delete
Global View | Create | Edit | Delete
Organization View

Global View

Organization View

Global View

_images/simplified-database-model.png
Users

Parties

Nodes

Collaborations

Tasks

Results

_images/ui-screenshot.png
VANTAGE

A Home
s Organization

6 Collaborations

B Roles

Users
{3 Nodes
A Tasks

%

J

Select organization to view:

Logout

@ New organization

IKNL

Zemikestraat
Eindhoven
Holanda
knlnl

Dowinload public key

Edit

Collaborations

collab_name

New collaboration

Users
Bananaa Platanomana s you! v
Froli Fresa v
Jesus Manzane v
Alexis Pina v
Juan Jelapeno v

View all users

‘supemode (oniine) | IKNL-allcola Node (offne) | - org 2_collab Node (offine)

al_collabb v

Nodes
org_2_collab v
important proje v

Roles
superrole v
something v
org_admin v
Root Tris is o defauit role v

_images/architecture-overview.png
de
/ No

Client > Server

“---->

(A) (B)
\ Node

(C)

_images/container_hierarchy.png
algorithm
container

algorithm
container

algorithm
container

algorithm
container

algorithm
container

_images/algorithm_wrapper.png
my_algorithm(data, *args, **kwargs)

_images/db_model.png
Organization

n

n

Node

Collaboration

_images/vertical_partition.png
o] o] o] 9f

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Concepts

 		
 Architecture

 		
 Entities

 		
 Network Actors

 		
 Server

 		
 Data Station

 		
 User or Application

 		
 End to end encryption

 		
 User guide

 		
 User interface

 		
 Python client

 		
 Requirements

 		
 Install

 		
 Use

 		
 R client

 		
 Install

 		
 Use

 		
 API

 		
 Node admin guide

 		
 Requirements

 		
 Python

 		
 Docker

 		
 Install

 		
 Use

 		
 Quick start

 		
 Available commands

 		
 Configure

 		
 How to create a configuration file

 		
 Where is my configuration file?

 		
 All configuration options

 		
 Configuration file location

 		
 Security

 		
 Logging

 		
 Server admin guide

 		
 Requirements

 		
 Python

 		
 Docker

 		
 Install

 		
 Local (test) Installation

 		
 Host your server

 		
 Deploy

 		
 NGINX

 		
 Azure app service

 		
 Install optional components

 		
 User Interface

 		
 EduVPN

 		
 RabbitMQ

 		
 Docker registry

 		
 SMTP server

 		
 Use

 		
 Quick start

 		
 Available commands

 		
 Local test setup

 		
 Batch import

 		
 Configure

 		
 How to create a configuration file

 		
 Where is my configuration file?

 		
 All configuration options

 		
 Configuration file location

 		
 Logging

 		
 Shell

 		
 Organizations

 		
 Roles and Rules

 		
 Users

 		
 Collaborations

 		
 Nodes

 		
 Tasks and Results

 		
 Algorithm Development

 		
 Concepts

 		
 Input & output

 		
 Wrappers

 		
 Mock client

 		
 Child containers

 		
 Networking

 		
 Cross language

 		
 Package & distribute

 		
 Classic Tutorial

 		
 Mathematical decomposition

 		
 Federated implementation

 		
 Vantage6 integration

 		
 Cross-language serialization

 		
 Technical Docs

 		
 Architecture

 		
 Network Actors

 		
 Components

 		
 Architecture

 		
 Features

 		
 Server features

 		
 Node features

 		
 Algorithm features

 		
 Communication between components

 		
 Node

 		
 Node class

 		
 NodeContext class

 		
 DockerNodeContext class

 		
 DockerBaseManager class

 		
 DockerManager class

 		
 DockerTaskManager class

 		
 VPNManager class

 		
 Algorithm execution exceptions

 		
 Proxy server

 		
 vnode-local commands

 		
 Server

 		
 Main server class

 		
 Starting the server

 		
 Permission management

 		
 Socket functionality

 		
 API endpoints

 		
 SQLAlchemy models

 		
 Mail service

 		
 Default roles

 		
 Developer community

 		
 Contribute

 		
 Support questions

 		
 Reporting issues

 		
 Security vulnerabilities

 		
 Community Meetings

 		
 Submitting patches

 		
 Documentation

 		
 How this documentation is created

 		
 API Documenation with OAS3+

 		
 Release

 		
 Version format

 		
 Create a release

 		
 The release pipeline

 		
 Distribute release

 		
 User Interface release

 		
 Glossary

 		
 Release notes

 		
 3.8.0

 		
 3.7.3

 		
 3.7.2

 		
 3.7.1

 		
 3.7.0

 		
 3.6.1

 		
 3.5.2

 		
 3.5.1

 		
 3.5.0

 		
 3.4.2

 		
 3.4.0 & 3.4.1

 		
 3.3.7

 		
 3.3.6

 		
 3.3.5

 		
 3.3.3

 		
 3.3.2

 		
 3.3.1

 		
 3.3.0

 		
 3.2.0

 		
 3.1.0

 		
 3.0.0

 		
 2.3.0 - 2.3.4

 		
 2.2.0

 		
 2.1.2 & 2.1.3

 		
 2.1.1

 		
 2.1.0

 		
 2.0.0.post1

 		
 2.0.0

 		
 1.2.3

 		
 1.2.2

 		
 1.2.1

 		
 1.2.0

 		
 1.1.0

 		
 1.0.0

 		
 Partners

_static/file.png

